- 1. (3 points each) Complete each of the following definitions carefully:
 - (a) Suppose $G = \{X_a : a \in A\}$ is a collection of sets. The Cartesian product ...
 - (b) A topological space (X, \mathcal{T}) is normal It is a T_4 space ...
 - (c) A set S is said to have the Lindelöff property ...
 - (d) Suppose f and f' are paths in a space X. Then f is said to be path homotopic to f' ...
 - (e) Suppose X is a space and x_0 , a point of X. The fundamental group ...
- 2. (3 points each) Give an example of each of the following or state that no such example exists. You need not show any work.
 - (a) a topological space X and a sequence in X that converges to more than one point.
 - (b) a T_1 space that is not Hausdorff
 - (c) a countable basis for the usual topology on \mathbb{R}^2 .
 - (d) a metric space that is not T_4
 - (e) a topological space X and two points x_0 and x_1 of X such that $\Pi_1(X, x_0)$ and $\Pi_1(X, x_1)$ are not isomorphic.
 - (f) two topological spaces X and Y with points $x_0 \in X$ and $y_0 \in Y$ such that $\Pi_1(X, x_0)$ $\Pi_1(Y, y_0)$ are isomorphic, but X and y are not homeomorphic.
 - (g) a retraction of B^2 onto S^1
- 3. (10 points each) Prove four of the following:
 - (a) Suppose $G = \{X_a : a \in A\}$ is a collection of topological spaces, X is a topological space, and f is a function from X into $\prod_A X_a$. If $\pi_a \circ f$ is continuous for each a in A, then f is continuous.
 - (b) Every subset of a second countable space X has the Lindelöf property.
 - (c) Suppose $G = \{X_a : a \in A\}$ is a collection of topological spaces. Then $\prod_A X_a$ is compact if and only if X_a is compact for each a in A.
 - (d) Suppose (X, \mathcal{T}) is a topological space. If A is a connected subset of X, and $A \subset B \subset \overline{A}$ then B is connected.
 - (e) Suppose $h:(X,x_0)\to (Y,y_0)$ is a map. Then $h_*:\Pi_1(X,x_0)\to \Pi_1(Y,y_0)$, given by $h_*([f])=[h\circ f]$, is a homomorphism.

- 4. (3 points each) Complete each of the following definitions carefully:
 - (a) Let X be a topological space. The k-th singular homology group $H_k(X)$ is ... (As part of your answer also define the group $C_k(X)$ of singular k-chains and the boundary operator $\partial_k : C_k(X) \to C_{k-1}(X)$.)
 - (b) Let X be a topological space. The 0-th reduced homology group $\widetilde{H}_0(X)$ is ...
 - (c) A pair (X, A) of topological spaces is called a *good pair* if ...
 - (d) Let $f: S^n \to S^n$ be a continuous map. The degree of f is ...
 - (e) Let X be a CW complex. The k-th cellular homology group $H_k^{\text{CW}}(X)$ is ...
- 5. (10 points each) Complete three of the following:
 - (a) Let $f, g: X \to Y$ be two continuous maps and let $f_*, g_*: H_k(X) \to H_k(Y)$ be the induced homomorphisms between homology groups. Sketch a proof that if $f \simeq g$, then $f_* = g_*$.
 - (b) Prove that if \mathbb{R}^n is homeomorphic to \mathbb{R}^m , then n=m.
 - (c) Prove Brouwer's fixed-point theorem: Every continuous map $f:D^n\to D^n$ has a fixed point.
 - (d) Prove the Borsuk-Ulam theorem: For every continuous map $f: S^n \to \mathbb{R}^n$ there exists a point $x \in S^n$ such that f(x) = f(-x). (You may take for granted that an odd map from a sphere to itself must have odd degree.)
 - (e) Let X be a (finite) CW-complex. Prove that if X has no two cells in adjacent dimensions, then $H_k^{\text{CW}}(X)$ is a free abelian group with a basis in one-to-one correspondence with the k-cells of X.
- 6. (10 points each) Complete three of the following:
 - (a) Let K^2 be the Klein bottle. Use the method of your choice to show that

$$H_k(K^2) \cong \begin{cases} \mathbb{Z} & \text{if } k = 0, \\ \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}) & \text{if } k = 1, \\ 0 & \text{if } k \ge 2. \end{cases}$$

- (b) Use a Meyer–Vietoris sequence to compute the homology groups $H_k(T^2)$, where T^2 is the two-dimensional torus.
- (c) Use the universal coefficient theorems to compute the groups $H_k(K^2; G)$ and $H^k(K^2; G)$, where G is an abelian group.
- (d) Use the standard CW complex structure of $\mathbb{R}P^n$ to compute the cellular homology groups $H_k^{\text{CW}}(\mathbb{R}P^n)$.

Useful facts for computing homology groups with coefficients in G

- $_ \otimes G$ and $\mathrm{Tor}_1(_, G)$ are additive functors
- $\bullet \ \ \mathbb{Z} \otimes G = G$
- $(\mathbb{Z}/n\mathbb{Z}) \otimes G = G/nG$
- $\operatorname{Tor}_1(\mathbb{Z}, G) = 0$
- $\operatorname{Tor}_1(\mathbb{Z}/n\mathbb{Z}, G) = \{g \in G \mid ng = 0\}$

Useful facts for computing cohomology groups with coefficients in G

- $\bullet \ \operatorname{Hom}(\ _,G)$ and $\operatorname{Ext}^1(\ _,G)$ are additive functors
- $\operatorname{Hom}(\mathbb{Z}, G) = G$
- $\bullet \ \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},G) = \{g \in G \mid ng = 0\}$
- $\operatorname{Ext}^1(\mathbb{Z}, G) = 0$
- $\operatorname{Ext}^1(\mathbb{Z}/n\mathbb{Z}, G) = G/nG$