A New Brand of Hardy Spaces and the Neumann Problem in UR Domains

Pedro Takemura Joint work with Marius Mitrea

Baylor University, Waco, TX

Recent Advances in Harmonic Analysis and Partial Differential Equations Celebrating Marius Mitrea's career May 19 – 22, 2025

Outline

Motivation

The Neumann Problem on the Hardy Space H^1

Let $\Omega \subseteq \mathbb{R}^n$ be an open set (+ geometric conditions) with surface measure σ on $\partial\Omega$, and outward unit normal ν . Fix an aperture parameter $\kappa \in (0, \infty)$. Consider the Neumann Problem for the Laplacian with data in the Hardy space $H^1(\partial\Omega, \sigma)$:

$$\begin{cases} u \in \mathscr{C}^{\infty}(\Omega), \quad \Delta u = 0 \text{ in } \Omega, \\ \mathcal{N}_{\kappa}(\nabla u) \in L^{1}(\partial\Omega, \sigma), \\ \partial_{\nu}u := \nu \cdot (\nabla u) \big|_{\partial\Omega}^{\kappa-n.t.} = f \in H^{1}(\partial\Omega, \sigma). \end{cases}$$

Motivation

The Neumann Problem on the Hardy Space H^1

Let $\Omega \subseteq \mathbb{R}^n$ be an open set (+ geometric conditions) with surface measure σ on $\partial\Omega$, and outward unit normal ν . Fix an aperture parameter $\kappa \in (0, \infty)$. Consider the Neumann Problem for the Laplacian with data in the Hardy space $H^1(\partial\Omega, \sigma)$:

$$\begin{cases} u \in \mathscr{C}^{\infty}(\Omega), \quad \Delta u = 0 \text{ in } \Omega, \\ \mathcal{N}_{\kappa}(\nabla u) \in L^{1}(\partial\Omega, \sigma), \\ \partial_{\nu}u := \nu \cdot (\nabla u) \Big|_{\partial\Omega}^{\kappa-n.t.} = f \in H^{1}(\partial\Omega, \sigma). \end{cases}$$

Here, $\Gamma_{\kappa}(x) := \{y \in \Omega : |y - x| < (1 + \kappa) \operatorname{dist}(y, \partial \Omega)\}$ denotes the nontangential approach region with vertex at $x \in \partial \Omega$.

Given a \mathcal{L}^n -measurable function *u* defined in Ω , and a point $x \in \partial \Omega$, set

$$(\mathcal{N}_{\kappa}u)(x) := \|u\|_{L^{\infty}(\Gamma_{\kappa}(x),\mathcal{L}^{n})} \text{ and } (u\Big|_{\partial\Omega}^{\kappa-n.t.})(x) := \lim_{\Gamma_{\kappa}(x) \ni y \to x} u(y).$$

Layer potential techniques have been proven to be an effective method to tackle a variety of boundary problems. In this case specifically,

Layer potential techniques have been proven to be an effective method to tackle a variety of boundary problems. In this case specifically,

• [E. Fabes and C. Kenig, 1981] in \mathscr{C}^1 domains.

 \diamond Invertibility of $-\frac{1}{2}I + K_{\Delta}^{\#}$ on $H^{1}(\partial\Omega, \sigma)$.

Layer potential techniques have been proven to be an effective method to tackle a variety of boundary problems. In this case specifically,

- [E. Fabes and C. Kenig, 1981] in \mathscr{C}^1 domains. \diamond Invertibility of $-\frac{1}{2}I + K_{\Delta}^{\#}$ on $H^1(\partial\Omega, \sigma)$.
- [B. Dahlberg and C. Kenig, 1987] in Lipschitz domains.
 ◊ Fatou-type result: H¹(∂Ω, σ) is the correct space of boundary data.

Layer potential techniques have been proven to be an effective method to tackle a variety of boundary problems. In this case specifically,

- [E. Fabes and C. Kenig, 1981] in \mathscr{C}^1 domains. \diamond Invertibility of $-\frac{1}{2}I + K_{\Delta}^{\#}$ on $H^1(\partial\Omega, \sigma)$.
- [B. Dahlberg and C. Kenig, 1987] in Lipschitz domains.
 ◊ Fatou-type result: H¹(∂Ω, σ) is the correct space of boundary data.

• [D. Mitrea, I. Mitrea, and M. Mitrea, 2023] on δ -AR domains, and for weakly elliptic systems *L* (more general than the Laplacian).

◊ Geometrically sensitive estimates for SIOs of layer potential type yielding invertibility of $-\frac{1}{2}I + K_L^{\#}$ on $H^1(∂Ω, σ)$.

Full force of Calderón-Zygmund theory of SIOs on UR sets required!

Layer potential techniques have been proven to be an effective method to tackle a variety of boundary problems. In this case specifically,

- [E. Fabes and C. Kenig, 1981] in \mathscr{C}^1 domains. \diamond Invertibility of $-\frac{1}{2}I + K_{\Delta}^{\#}$ on $H^1(\partial\Omega, \sigma)$.
- [B. Dahlberg and C. Kenig, 1987] in Lipschitz domains.
 ◊ Fatou-type result: H¹(∂Ω, σ) is the correct space of boundary data.
- [D. Mitrea, I. Mitrea, and M. Mitrea, 2023] on δ -AR domains, and for weakly elliptic systems *L* (more general than the Laplacian).
 - ◊ Geometrically sensitive estimates for SIOs of layer potential type yielding invertibility of $-\frac{1}{2}I + K_L^{\#}$ on $H^1(\partial\Omega, \sigma)$.
 - ◊ Full force of Calderón-Zygmund theory of SIOs on UR sets required!

Note: δ -AR domains is the sharp version, from a GMT point of view, of the class of Lipschitz domains with small Lipschitz constants (cf. [GHA]).

Other Related Works

Related works regarding the Neumann Problem on the Hardy space $H^p(\partial\Omega, \sigma)$ include:

• **[R. Brown, 1995]** in (starlike) Lipschitz domains, in dimension $n \ge 3$. \diamond For $1 - \varepsilon with <math>\varepsilon \in (0, 1)$ small.

Other Related Works

Related works regarding the Neumann Problem on the Hardy space $H^{p}(\partial\Omega, \sigma)$ include:

• **[R. Brown, 1995]** in (starlike) Lipschitz domains, in dimension $n \ge 3$. \diamond For $1 - \varepsilon with <math>\varepsilon \in (0, 1)$ small.

• [N. Kalton and M. Mitrea, 1998] in Lipschitz domains, for the Laplacian and the Lamé system.

 \diamond For 1 – $\varepsilon with <math>\varepsilon \in (0, 1)$ small.

Complex interpolation methods.

Other Related Works

Related works regarding the Neumann Problem on the Hardy space $H^{p}(\partial\Omega, \sigma)$ include:

• **[R. Brown, 1995]** in (starlike) Lipschitz domains, in dimension $n \ge 3$. \diamond For $1 - \varepsilon with <math>\varepsilon \in (0, 1)$ small.

• [N. Kalton and M. Mitrea, 1998] in Lipschitz domains, for the Laplacian and the Lamé system.

 \diamond For $1 - \varepsilon with <math>\varepsilon \in (0, 1)$ small.

Complex interpolation methods.

• **[D. Mitrea, 2002]** in Lipschitz domains, in dimension n = 2. \diamond For $\frac{2}{3} - \varepsilon with <math>\varepsilon \in (0, \frac{1}{6}]$ small.

Recent Work

[M. Mitrea, P.T. 2024] Consider an AR domain $\Omega \subseteq \mathbb{R}^n$ with GMT outward unit normal ν . Let $L := A_{jk}\partial_j\partial_k$ be an $M \times M$ weakly elliptic system in \mathbb{R}^n , and assume $A \in \mathfrak{A}_L^{\text{dis}}$ and $A^\top \in \mathfrak{A}_L^{\text{dis}}$. Fix $p \in (1, \infty)$. Then there exists $\delta \in (0, 1)$ such that whenever $\|\nu\|_{\text{BMO}(\partial\Omega,\sigma)} < \delta$ the Neumann Problem with data prescribed in the Beurling-Hardy space is well posed:

$$(\mathrm{HA}^{p}\mathrm{-NBVP}) \begin{cases} u \in [\mathscr{C}^{\infty}(\Omega)]^{M}, & Lu = 0 \text{ in } \Omega \\ \mathcal{N}_{\kappa}(\nabla u) \in \mathrm{A}^{p}(\partial\Omega, \sigma), \\ \partial_{\nu}^{A}u = f \in [\mathrm{HA}^{p}(\partial\Omega, \sigma)]^{M}. \end{cases}$$

Recent Work

[M. Mitrea, P.T. 2024] Consider an AR domain $\Omega \subseteq \mathbb{R}^n$ with GMT outward unit normal ν . Let $L := A_{jk}\partial_j\partial_k$ be an $M \times M$ weakly elliptic system in \mathbb{R}^n , and assume $A \in \mathfrak{A}_L^{\text{dis}}$ and $A^\top \in \mathfrak{A}_L^{\text{dis}}$. Fix $p \in (1, \infty)$. Then there exists $\delta \in (0, 1)$ such that whenever $\|\nu\|_{\text{BMO}(\partial\Omega,\sigma)} < \delta$ the Neumann Problem with data prescribed in the Beurling-Hardy space is well posed:

$$(\mathrm{HA}^{p}\mathrm{-NBVP}) \begin{cases} u \in [\mathscr{C}^{\infty}(\Omega)]^{M}, & Lu = 0 \text{ in } \Omega \\ \mathcal{N}_{\kappa}(\nabla u) \in \mathrm{A}^{p}(\partial\Omega, \sigma), \\ \partial_{\nu}^{A}u = f \in [\mathrm{HA}^{p}(\partial\Omega, \sigma)]^{M}. \end{cases}$$

Fatou-type result: HA^{*p*} is the "correct" space of boundary data in the formulation of this Neumann Problem.

Let $\Sigma \subseteq \mathbb{R}^n$ be an unbounded Ahlfors regular set, and $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Denote by $\Delta(x, r)$ the surface ball $B(x, r) \cap \Sigma$ on Σ , for each $x \in \Sigma$ and r > 0. Fix a reference point $x_0 \in \Sigma$, and $2_* \gg 1$. Set $C_0 := \Delta(x_0, 2_*)$ and $C_k := \Delta(x_0, 2_*^{k+1}) \setminus \Delta(x_0, 2_*^k)$ for each $k \in \mathbb{N}$. Fix $p \in (1, \infty)$.

Let $\Sigma \subseteq \mathbb{R}^n$ be an unbounded Ahlfors regular set, and $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Denote by $\Delta(x, r)$ the surface ball $B(x, r) \cap \Sigma$ on Σ , for each $x \in \Sigma$ and r > 0. Fix a reference point $x_0 \in \Sigma$, and $2_* \gg 1$. Set $C_0 := \Delta(x_0, 2_*)$ and $C_k := \Delta(x_0, 2_*^{k+1}) \setminus \Delta(x_0, 2_*^k)$ for each $k \in \mathbb{N}$. Fix $p \in (1, \infty)$. For each σ -measurable function f on Σ introduce

$$\|f\|_{\mathcal{A}^{p}(\Sigma,\sigma)} := \sum_{k=0}^{\infty} 2^{k(n-1)(1-1/p)}_{*} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \in [0,\infty].$$

The Beurling space $A^{p}(\Sigma, \sigma)$ is defined as

Let $\Sigma \subseteq \mathbb{R}^n$ be an unbounded Ahlfors regular set, and $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Denote by $\Delta(x, r)$ the surface ball $B(x, r) \cap \Sigma$ on Σ , for each $x \in \Sigma$ and r > 0. Fix a reference point $x_0 \in \Sigma$, and $2_* \gg 1$. Set $C_0 := \Delta(x_0, 2_*)$ and $C_k := \Delta(x_0, 2_*^{k+1}) \setminus \Delta(x_0, 2_*^k)$ for each $k \in \mathbb{N}$. Fix $p \in (1, \infty)$. For each σ -measurable function f on Σ introduce

$$\|f\|_{\mathrm{A}^{p}(\Sigma,\sigma)} := \sum_{k=0}^{\infty} 2^{k(n-1)(1-1/p)}_{*} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \in [0,\infty].$$

The Beurling space $A^{p}(\Sigma, \sigma)$ is defined as

 $\mathrm{A}^{p}(\Sigma,\sigma):=\big\{f:\Sigma\to\mathbb{R}: f \text{ is } \sigma\text{-measurable and } \|f\|_{\mathrm{A}^{p}(\Sigma,\sigma)}<\infty\big\}.$

Let $\Sigma \subseteq \mathbb{R}^n$ be an unbounded Ahlfors regular set, and $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Denote by $\Delta(x, r)$ the surface ball $B(x, r) \cap \Sigma$ on Σ , for each $x \in \Sigma$ and r > 0. Fix a reference point $x_0 \in \Sigma$, and $2_* \gg 1$. Set $C_0 := \Delta(x_0, 2_*)$ and $C_k := \Delta(x_0, 2_*^{k+1}) \setminus \Delta(x_0, 2_*^k)$ for each $k \in \mathbb{N}$. Fix $p \in (1, \infty)$. For each σ -measurable function f on Σ introduce

$$\|f\|_{\mathrm{A}^{p}(\Sigma,\sigma)} := \sum_{k=0}^{\infty} 2^{k(n-1)(1-1/p)}_{*} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \in [0,\infty].$$

The Beurling space $A^{p}(\Sigma, \sigma)$ is defined as

 $\mathrm{A}^p(\Sigma,\sigma) := \big\{ f: \Sigma \to \mathbb{R} : f \text{ is } \sigma \text{-measurable and } \|f\|_{\mathrm{A}^p(\Sigma,\sigma)} < \infty \big\}.$

<u>Basic Fact:</u> $A^{p}(\Sigma, \sigma) \hookrightarrow L^{1}(\Sigma, \sigma) \cap L^{p}(\Sigma, \sigma)$ continuously, for $p \in (1, \infty)$.

Let $\Sigma \subseteq \mathbb{R}^n$ be an unbounded Ahlfors regular set, and $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Denote by $\Delta(x, r)$ the surface ball $B(x, r) \cap \Sigma$ on Σ , for each $x \in \Sigma$ and r > 0. Fix a reference point $x_0 \in \Sigma$, and $2_* \gg 1$. Set $C_0 := \Delta(x_0, 2_*)$ and $C_k := \Delta(x_0, 2_*^{k+1}) \setminus \Delta(x_0, 2_*^k)$ for each $k \in \mathbb{N}$. Fix $p \in (1, \infty)$. For each σ -measurable function f on Σ introduce

$$\|f\|_{\mathrm{A}^{p}(\Sigma,\sigma)} := \sum_{k=0}^{\infty} 2^{k(n-1)(1-1/p)}_{*} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \in [0,\infty].$$

The Beurling space $A^{p}(\Sigma, \sigma)$ is defined as

 $\mathrm{A}^{p}(\Sigma,\sigma):=\big\{f:\Sigma\to\mathbb{R}: f \text{ is } \sigma\text{-measurable and } \|f\|_{\mathrm{A}^{p}(\Sigma,\sigma)}<\infty\big\}.$

<u>Basic Fact:</u> $A^{p}(\Sigma, \sigma) \hookrightarrow L^{1}(\Sigma, \sigma) \cap L^{p}(\Sigma, \sigma)$ continuously, for $p \in (1, \infty)$.

<u>Note</u>: The space A^{p} is quite different (in nature) from L^{1} and L^{p} .

Fix a background parameter $\gamma \in (0, 1)$. Following [MiTa24], for any $p \in (1, \infty)$, introduce the Beurling-Hardy space by setting

$$\mathrm{HA}^{p}(\Sigma,\sigma):=\left\{f\in L^{1}_{\mathrm{loc}}(\Sigma,\sigma)\,:\, f^{\#}_{\gamma}\in \mathrm{A}^{p}(\Sigma,\sigma)
ight\}$$

and equip this with $||f||_{\operatorname{HA}^{p}(\Sigma,\sigma)} := ||f_{\gamma}^{\#}||_{\operatorname{A}^{p}(\Sigma,\sigma)}$ for each $f \in \operatorname{HA}^{p}(\Sigma,\sigma)$.

Fix a background parameter $\gamma \in (0, 1)$. Following [MiTa24], for any $p \in (1, \infty)$, introduce the Beurling-Hardy space by setting

$$\mathrm{HA}^p(\Sigma,\sigma) := \left\{ f \in L^1_{\mathrm{loc}}(\Sigma,\sigma) \, : \, f^\#_\gamma \in \mathrm{A}^p(\Sigma,\sigma) \right\}$$

and equip this with $||f||_{\operatorname{HA}^{p}(\Sigma,\sigma)} := ||f_{\gamma}^{\#}||_{\operatorname{A}^{p}(\Sigma,\sigma)}$ for each $f \in \operatorname{HA}^{p}(\Sigma,\sigma)$. As in [GHA], define the grand maximal function of any $f \in L^{1}_{\operatorname{loc}}(\Sigma,\sigma)$ as

$$f^{\#}_{\gamma}(x) := \sup_{\psi \in \mathcal{B}^{\gamma}_{x}(\Sigma)} |\langle f, \psi
angle| \quad orall \ x \in \Sigma,$$

with $\mathcal{B}_{x}^{\gamma}(\Sigma) \subseteq \mathscr{C}^{\gamma}(\Sigma)$ being a collection of suitably normalized "bump" functions centered at $x \in \Sigma$.

Fix a background parameter $\gamma \in (0, 1)$. Following [MiTa24], for any $p \in (1, \infty)$, introduce the Beurling-Hardy space by setting

$$\mathrm{HA}^p(\Sigma,\sigma) := \left\{ f \in L^1_{\mathrm{loc}}(\Sigma,\sigma) \, : \, f^\#_\gamma \in \mathrm{A}^p(\Sigma,\sigma) \right\}$$

and equip this with $||f||_{\operatorname{HA}^{p}(\Sigma,\sigma)} := ||f_{\gamma}^{\#}||_{\operatorname{A}^{p}(\Sigma,\sigma)}$ for each $f \in \operatorname{HA}^{p}(\Sigma,\sigma)$. As in [GHA], define the grand maximal function of any $f \in L^{1}_{\operatorname{loc}}(\Sigma,\sigma)$ as

$$f^{\#}_{\gamma}(\mathbf{X}) := \sup_{\psi \in \mathcal{B}^{\gamma}_{\mathbf{X}}(\Sigma)} |\langle f, \psi
angle| \quad orall \mathbf{X} \in \Sigma,$$

with $\mathcal{B}_{x}^{\gamma}(\Sigma) \subseteq \mathscr{C}^{\gamma}(\Sigma)$ being a collection of suitably normalized "bump" functions centered at $x \in \Sigma$.

<u>Fact:</u> HA^{*p*}(Σ, σ) \hookrightarrow $H^1(\Sigma, \sigma) \cap L^p(\Sigma, \sigma)$ continuously, for $p \in (1, \infty)$.

Fix a background parameter $\gamma \in (0, 1)$. Following [MiTa24], for any $p \in (1, \infty)$, introduce the Beurling-Hardy space by setting

$$\mathrm{HA}^p(\Sigma,\sigma) := \left\{ f \in L^1_{\mathrm{loc}}(\Sigma,\sigma) \, : \, f^\#_\gamma \in \mathrm{A}^p(\Sigma,\sigma) \right\}$$

and equip this with $||f||_{\operatorname{HA}^{p}(\Sigma,\sigma)} := ||f_{\gamma}^{\#}||_{\operatorname{A}^{p}(\Sigma,\sigma)}$ for each $f \in \operatorname{HA}^{p}(\Sigma,\sigma)$. As in [GHA], define the grand maximal function of any $f \in L^{1}_{\operatorname{loc}}(\Sigma,\sigma)$ as

$$f^{\#}_{\gamma}({\pmb{x}}) := \sup_{\psi \in \mathcal{B}^{\gamma}_{{\pmb{x}}}(\Sigma)} |\langle {\pmb{f}}, \psi
angle| \quad orall {\pmb{x}} \in \Sigma,$$

with $\mathcal{B}_{x}^{\gamma}(\Sigma) \subseteq \mathscr{C}^{\gamma}(\Sigma)$ being a collection of suitably normalized "bump" functions centered at $x \in \Sigma$.

<u>Fact</u>: HA^{*p*}(Σ, σ) \hookrightarrow $H^1(\Sigma, \sigma) \cap L^p(\Sigma, \sigma)$ continuously, for $p \in (1, \infty)$.

<u>Note</u>: HA^p can be thought as a " L^{p} -flavored" H^{1} .

Atomic Characterization of HA^p

In the same context as before, a σ -measurable function $a : \Sigma \to \mathbb{R}$ is called an x_0 -central L^{ρ} -atom provided there exists $R \ge 2_*$ such that

- Localization: supp $a \subseteq \Delta(x_0, R)$,
- Normalization: $||a||_{L^p(\Sigma,\sigma)} \leq R^{(n-1)(1/p-1)}$,
- Vanishing Moment: $\int_{\Sigma} a \, d\sigma = 0.$

Atomic Characterization of HA^p

In the same context as before, a σ -measurable function $a : \Sigma \to \mathbb{R}$ is called an x_0 -central L^{ρ} -atom provided there exists $R \ge 2_*$ such that

- Localization: supp $a \subseteq \Delta(x_0, R)$,
- Normalization: $\|a\|_{L^p(\Sigma,\sigma)} \leq R^{(n-1)(1/p-1)}$,

• Vanishing Moment:
$$\int_{\Sigma} a \, d\sigma = 0.$$

These atoms are the building blocks for HA^{p} . In fact, given any $f \in L^{1}(\Sigma, \sigma)$, one has

$$f \in \operatorname{HA}^p(\Sigma, \sigma) \iff f = \sum_{k=0}^{\infty} \lambda_k a_k \text{ in } L^1(\Sigma, \sigma)$$

for some sequence of x_0 -central L^p -atoms $\{a_k\}_{k \in \mathbb{N}_0}$, and some sequence $\{\lambda_k\}_{k \in \mathbb{N}_0} \in \ell^1(\mathbb{R})$. This characterization is quantitative!

Recall that the A^{p} -norm of a σ -measurable function f on Σ is defined as

$$\|f\|_{\mathcal{A}^{p}(\Sigma,\sigma)} = \sum_{k=0}^{\infty} 2^{k(n-1)(1-1/p)}_{*} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)}$$

Recall that the A^{p} -norm of a σ -measurable function f on Σ is defined as

$$\begin{split} \|f\|_{\mathcal{A}^{p}(\Sigma,\sigma)} &= \sum_{k=0}^{\infty} 2_{*}^{k(n-1)(1-1/p)} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \\ &\approx \sum_{k=0}^{\infty} \frac{\sigma(\Delta(x_{0},2_{*}^{k}))}{\|\mathbb{1}_{\Delta(x_{0},2_{*}^{k})}\|_{L^{p}(\Sigma,\sigma)}} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)}, \end{split}$$

Recall that the A^p -norm of a σ -measurable function f on Σ is defined as

$$\begin{split} \|f\|_{\mathcal{A}^{p}(\Sigma,\sigma)} &= \sum_{k=0}^{\infty} 2_{*}^{k(n-1)(1-1/p)} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \\ &\approx \sum_{k=0}^{\infty} \frac{\sigma(\Delta(x_{0},2_{*}^{k}))}{\|\mathbb{1}_{\Delta(x_{0},2_{*}^{k})}\|_{L^{p}(\Sigma,\sigma)}} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)}, \end{split}$$

while the normalization of a central L^p -atom a on Σ is

$$\|\boldsymbol{a}\|_{L^p(\Sigma,\sigma)} \leq R^{(n-1)(1/p-1)}$$

Role of L^p

Recall that the A^p -norm of a σ -measurable function f on Σ is defined as

$$\begin{split} \|f\|_{\mathcal{A}^{p}(\Sigma,\sigma)} &= \sum_{k=0}^{\infty} 2_{*}^{k(n-1)(1-1/p)} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \\ &\approx \sum_{k=0}^{\infty} \frac{\sigma(\Delta(x_{0},2_{*}^{k}))}{\|\mathbb{1}_{\Delta(x_{0},2_{*}^{k})}\|_{L^{p}(\Sigma,\sigma)}} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)}, \end{split}$$

while the normalization of a central L^p -atom a on Σ is

$$\|a\|_{L^p(\Sigma,\sigma)} \leq R^{(n-1)(1/p-1)} \approx \frac{\|\mathbb{1}_{\Delta(x_0,R)}\|_{L^p(\Sigma,\sigma)}}{\sigma(\Delta(x_0,R))}.$$

Recall that the A^p -norm of a σ -measurable function f on Σ is defined as

$$\begin{split} \|f\|_{\mathcal{A}^{p}(\Sigma,\sigma)} &= \sum_{k=0}^{\infty} 2_{*}^{k(n-1)(1-1/p)} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \\ &\approx \sum_{k=0}^{\infty} \frac{\sigma(\Delta(x_{0},2_{*}^{k}))}{\|\mathbb{1}_{\Delta(x_{0},2_{*}^{k})}\|_{L^{p}(\Sigma,\sigma)}} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)}, \end{split}$$

while the normalization of a central L^p -atom a on Σ is

$$\|a\|_{L^{p}(\Sigma,\sigma)} \leq R^{(n-1)(1/p-1)} \approx \frac{\|\mathbb{1}_{\Delta(x_{0},R)}\|_{L^{p}(\Sigma,\sigma)}}{\sigma(\Delta(x_{0},R))}.$$

• What is the role of *L^p* in the context of Beurling-Hardy Spaces HA^p ?

Recall that the A^p -norm of a σ -measurable function f on Σ is defined as

$$\begin{split} \|f\|_{\mathcal{A}^{p}(\Sigma,\sigma)} &= \sum_{k=0}^{\infty} 2_{*}^{k(n-1)(1-1/p)} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)} \\ &\approx \sum_{k=0}^{\infty} \frac{\sigma(\Delta(x_{0},2_{*}^{k}))}{\|\mathbb{1}_{\Delta(x_{0},2_{*}^{k})}\|_{L^{p}(\Sigma,\sigma)}} \|f \cdot \mathbb{1}_{C_{k}}\|_{L^{p}(\Sigma,\sigma)}, \end{split}$$

while the normalization of a central L^p -atom a on Σ is

$$\|\boldsymbol{a}\|_{\boldsymbol{L}^{p}(\boldsymbol{\Sigma},\sigma)} \leq \boldsymbol{R}^{(n-1)(1/p-1)} \approx \frac{\|\mathbb{1}_{\Delta(\boldsymbol{X}_{0},\boldsymbol{R})}\|_{\boldsymbol{L}^{p}(\boldsymbol{\Sigma},\sigma)}}{\sigma(\Delta(\boldsymbol{X}_{0},\boldsymbol{R}))}.$$

What is the role of L^p in the context of Beurling-Hardy Spaces HA^p?
 ◇ For one thing, L^p is good for doing Harmonic Analysis, 1

Recall that the A^p -norm of a σ -measurable function f on Σ is defined as

$$egin{aligned} \|f\|_{\mathrm{A}^p(\Sigma,\sigma)} &= \sum_{k=0}^\infty 2^{k(n-1)(1-1/p)}_* \|f\cdot 1\!\!1_{C_k}\|_{L^p(\Sigma,\sigma)} \ &pprox \sum_{k=0}^\infty rac{\sigmaigl(\Delta(x_0,2^k_*)igr)}{\|1\!\!1_{\Delta(x_0,2^k_*)}\|_{L^p(\Sigma,\sigma)}} \|f\cdot 1\!\!1_{C_k}\|_{L^p(\Sigma,\sigma)}, \end{aligned}$$

while the normalization of a central L^p -atom a on Σ is

$$\|a\|_{L^{p}(\Sigma,\sigma)} \leq R^{(n-1)(1/p-1)} \approx \frac{\|\mathbb{1}_{\Delta(x_{0},R)}\|_{L^{p}(\Sigma,\sigma)}}{\sigma(\Delta(x_{0},R))}.$$

What is the role of L^p in the context of Beurling-Hardy Spaces HA^p ?
 ◇ For one thing, L^p is good for doing Harmonic Analysis, 1
 ◇ The atomic theory for HA^p is *tied up* with the manner in which the space A^p is "normalized".

Recall that the A^p -norm of a σ -measurable function f on Σ is defined as

$$egin{aligned} \|f\|_{\mathrm{A}^p(\Sigma,\sigma)} &= \sum_{k=0}^\infty 2^{k(n-1)(1-1/p)}_* \|f\cdot 1\!\!1_{C_k}\|_{L^p(\Sigma,\sigma)} \ &pprox \sum_{k=0}^\infty rac{\sigmaigl(\Delta(x_0,2^k_*)igr)}{\|1\!\!1_{\Delta(x_0,2^k_*)}\|_{L^p(\Sigma,\sigma)}} \|f\cdot 1\!\!1_{C_k}\|_{L^p(\Sigma,\sigma)}, \end{aligned}$$

while the normalization of a central L^p -atom a on Σ is

$$\|\boldsymbol{a}\|_{\boldsymbol{L}^{p}(\boldsymbol{\Sigma},\sigma)} \leq \boldsymbol{R}^{(n-1)(1/p-1)} \approx \frac{\|\mathbb{1}_{\Delta(\boldsymbol{X}_{0},\boldsymbol{R})}\|_{\boldsymbol{L}^{p}(\boldsymbol{\Sigma},\sigma)}}{\sigma(\Delta(\boldsymbol{X}_{0},\boldsymbol{R}))}.$$

What is the role of L^p in the context of Beurling-Hardy Spaces HA^p?
 ◊ For one thing, L^p is good for doing Harmonic Analysis, 1
 ◊ The atomic theory for HA^p is *tied up* with the manner in which the space A^p is "normalized". *This suggests how one can transition from L^p to a generic space* X *of σ-measurable functions on* Σ.

In an Abstract Setting

New Problem

Motivated by the HA^{*p*} template, replacing L^{p} by a generic function space X leads to functions spaces A_{X} and HA_{X} (to be made precise later).

Motivated by the HA^p template, replacing L^{p} by a generic function space X leads to functions spaces A_{X} and HA_{X} (to be made precise later).

Consider a weakly elliptic $M \times M$ system $L := A_{jk}^{\alpha\beta} \partial_j \partial_k$ in \mathbb{R}^n . Formulate the following Neumann Problem with data prescribed in the X-based Beurling-Hardy space:

$$(\mathrm{HA}_{\mathbb{X}}-\mathrm{NBVP}) \begin{cases} u \in \left[\mathscr{C}^{\infty}(\Omega)\right]^{M}, & Lu = 0 \text{ in } \Omega, \\ \mathcal{N}_{\kappa}(\nabla u) \in \mathrm{A}_{\mathbb{X}}(\partial\Omega, \sigma), \\ \partial_{\nu}^{A}u = f \in \left[\mathrm{HA}_{\mathbb{X}}(\partial\Omega, \sigma)\right]^{M}. \end{cases}$$

 \bullet Introduce a new brand of Hardy spaces ${\rm HA}_{\mathbb X}$ associated with an $\mathbb X\text{-}$ based Beurling space.

- \bullet Introduce a new brand of Hardy spaces ${\rm HA}_{\mathbb X}$ associated with an ${\mathbb X}\text{-}$ based Beurling space.
- \bullet Develop a Calderón-Zygmund theory for SIOs on ${\rm HA}_{\mathbb X}.$

- \bullet Introduce a new brand of Hardy spaces ${\rm HA}_{\mathbb X}$ associated with an $\mathbb X\text{-}$ based Beurling space.
- \bullet Develop a Calderón-Zygmund theory for SIOs on ${\rm HA}_{\mathbb X}.$
- \bullet Implement layer potential techniques to tackle the Neumann Problem with boundary data in ${\rm HA}_{\mathbb X}.$

Fix a measure space $(\mathfrak{X}, \mathfrak{M}, \mu)$. Let $(\mathbb{X}, \|\cdot\|_{\mathbb{X}})$ be a normed vector space contained in $\mathscr{M}(\mathfrak{X}, \mu)$, the set of all μ -measurable functions on \mathfrak{X} . Following [GHA], call \mathbb{X} a Generalized Banach Function Space (GBFS) on (\mathfrak{X}, μ) if for all $f, g \in \mathscr{M}(\mathfrak{X}, \mu)$ one has:

Fix a measure space $(\mathfrak{X}, \mathfrak{M}, \mu)$. Let $(\mathbb{X}, \|\cdot\|_{\mathbb{X}})$ be a normed vector space contained in $\mathscr{M}(\mathfrak{X}, \mu)$, the set of all μ -measurable functions on \mathfrak{X} . Following [GHA], call \mathbb{X} a Generalized Banach Function Space (GBFS) on (\mathfrak{X}, μ) if for all $f, g \in \mathscr{M}(\mathfrak{X}, \mu)$ one has:

(1) If $|f| \leq |g|$ p.w. μ -a.e. and $g \in \mathbb{X}$, then $f \in \mathbb{X}$ and $||f||_{\mathbb{X}} \leq ||g||_{\mathbb{X}}$.

Fix a measure space $(\mathfrak{X}, \mathfrak{M}, \mu)$. Let $(\mathbb{X}, \|\cdot\|_{\mathbb{X}})$ be a normed vector space contained in $\mathscr{M}(\mathfrak{X}, \mu)$, the set of all μ -measurable functions on \mathfrak{X} . Following [GHA], call \mathbb{X} a Generalized Banach Function Space (GBFS) on (\mathfrak{X}, μ) if for all $f, g \in \mathscr{M}(\mathfrak{X}, \mu)$ one has:

- (1) If $|f| \leq |g|$ p.w. μ -a.e. and $g \in \mathbb{X}$, then $f \in \mathbb{X}$ and $||f||_{\mathbb{X}} \leq ||g||_{\mathbb{X}}$.
- (2) If $\{f_j\}_{j\in\mathbb{N}} \subseteq \mathbb{X}$ is such that $0 \leq f_j \nearrow |f|$ p.w. μ -a.e. as $j \to \infty$ and $\sup_{j\in\mathbb{N}} ||f_j||_{\mathbb{X}} < \infty$, then $f \in \mathbb{X}$ and $||f||_{\mathbb{X}} = \sup_{j\in\mathbb{N}} ||f_j||_{\mathbb{X}}$.

Fix a measure space $(\mathfrak{X}, \mathfrak{M}, \mu)$. Let $(\mathbb{X}, \|\cdot\|_{\mathbb{X}})$ be a normed vector space contained in $\mathscr{M}(\mathfrak{X}, \mu)$, the set of all μ -measurable functions on \mathfrak{X} . Following [GHA], call \mathbb{X} a Generalized Banach Function Space (GBFS) on (\mathfrak{X}, μ) if for all $f, g \in \mathscr{M}(\mathfrak{X}, \mu)$ one has:

- (1) If $|f| \leq |g|$ p.w. μ -a.e. and $g \in \mathbb{X}$, then $f \in \mathbb{X}$ and $||f||_{\mathbb{X}} \leq ||g||_{\mathbb{X}}$.
- (2) If $\{f_j\}_{j\in\mathbb{N}} \subseteq \mathbb{X}$ is such that $0 \leq f_j \nearrow |f|$ p.w. μ -a.e. as $j \to \infty$ and $\sup_{j\in\mathbb{N}} \|f_j\|_{\mathbb{X}} < \infty$, then $f \in \mathbb{X}$ and $\|f\|_{\mathbb{X}} = \sup_{j\in\mathbb{N}} \|f_j\|_{\mathbb{X}}$.
- (3) There exists $\{Y_j\}_{j \in \mathbb{N}} \subseteq \mathfrak{M}$ with the property that $\mathfrak{X} = \bigcup_{j \in \mathbb{N}} Y_j$ and $\mathbb{1}_{Y_j} \in \mathbb{X}$ for all $j \in \mathbb{N}$.

Fix a measure space $(\mathfrak{X}, \mathfrak{M}, \mu)$. Let $(\mathbb{X}, \|\cdot\|_{\mathbb{X}})$ be a normed vector space contained in $\mathscr{M}(\mathfrak{X}, \mu)$, the set of all μ -measurable functions on \mathfrak{X} . Following [GHA], call \mathbb{X} a Generalized Banach Function Space (GBFS) on (\mathfrak{X}, μ) if for all $f, g \in \mathscr{M}(\mathfrak{X}, \mu)$ one has:

- (1) If $|f| \leq |g|$ p.w. μ -a.e. and $g \in \mathbb{X}$, then $f \in \mathbb{X}$ and $||f||_{\mathbb{X}} \leq ||g||_{\mathbb{X}}$.
- (2) If $\{f_j\}_{j\in\mathbb{N}} \subseteq \mathbb{X}$ is such that $0 \leq f_j \nearrow |f|$ p.w. μ -a.e. as $j \to \infty$ and $\sup_{j\in\mathbb{N}} \|f_j\|_{\mathbb{X}} < \infty$, then $f \in \mathbb{X}$ and $\|f\|_{\mathbb{X}} = \sup_{j\in\mathbb{N}} \|f_j\|_{\mathbb{X}}$.
- (3) There exists $\{Y_j\}_{j \in \mathbb{N}} \subseteq \mathfrak{M}$ with the property that $\mathfrak{X} = \bigcup_{j \in \mathbb{N}} Y_j$ and $\mathbb{1}_{Y_i} \in \mathbb{X}$ for all $j \in \mathbb{N}$.

The associated space (a.k.a. Köthe dual) of X is defined as

$$\mathbb{X}' := \Big\{ oldsymbol{g} \in \mathscr{M}(\mathfrak{X},\mu) : \int_{\mathfrak{X}} |foldsymbol{g}| \, oldsymbol{d}\mu < \infty \ \, orall \, f \in \mathbb{X} \Big\},$$

equipped with the norm $\|g\|_{\mathbb{X}'} := \sup \Big\{ \int_{\mathfrak{X}} |fg| d\mu : \|f\|_{\mathbb{X}} \leq 1 \Big\}.$

Example 1. For $p \in (1, \infty)$, the Lebesgue space $L^{p}(\Sigma, \sigma)$ is a GBFS,

and its Köthe dual is $L^{p'}(\Sigma, \sigma)$, where $p' := \frac{p}{p-1} \in (1, \infty)$.

Example 1. For $p \in (1, \infty)$, the Lebesgue space $L^{p}(\Sigma, \sigma)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, \sigma)$, where $p' := \frac{p}{p-1} \in (1, \infty)$.

Example 2. Given $p \in (1, \infty)$, and $w \in A_p(\Sigma, \sigma)$, the Muckenhoupt weighted Lebesgue space $L^p(\Sigma, w)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, w')$, where $w' := w^{1-p'} \in A_{p'}(\Sigma, \sigma)$.

Example 1. For $p \in (1, \infty)$, the Lebesgue space $L^{p}(\Sigma, \sigma)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, \sigma)$, where $p' := \frac{p}{p-1} \in (1, \infty)$.

Example 2. Given $p \in (1, \infty)$, and $w \in A_p(\Sigma, \sigma)$, the Muckenhoupt weighted Lebesgue space $L^p(\Sigma, w)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, w')$, where $w' := w^{1-p'} \in A_{p'}(\Sigma, \sigma)$.

Example 3. Let $p(\cdot) : \Sigma \to (1, \infty)$ be a σ -measurable function. Then the variable exponent Lebesgue space $L^{p(\cdot)}(\Sigma, \sigma)$ is a GBFS, and $L^{p'(\cdot)}(\Sigma, \sigma)$ is its Köthe dual, where $p'(\cdot) = \frac{p(\cdot)}{p(\cdot)-1}$.

Example 1. For $p \in (1, \infty)$, the Lebesgue space $L^{p}(\Sigma, \sigma)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, \sigma)$, where $p' := \frac{p}{p-1} \in (1, \infty)$.

Example 2. Given $p \in (1, \infty)$, and $w \in A_p(\Sigma, \sigma)$, the Muckenhoupt weighted Lebesgue space $L^p(\Sigma, w)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, w')$, where $w' := w^{1-p'} \in A_{p'}(\Sigma, \sigma)$.

Example 3. Let $p(\cdot) : \Sigma \to (1, \infty)$ be a σ -measurable function. Then the variable exponent Lebesgue space $L^{p(\cdot)}(\Sigma, \sigma)$ is a GBFS, and $L^{p'(\cdot)}(\Sigma, \sigma)$ is its Köthe dual, where $p'(\cdot) = \frac{p(\cdot)}{p(\cdot)-1}$.

Example 4. For $p \in (1, \infty)$ and $q \in [1, \infty]$, the Lorentz space $L^{p,q}(\Sigma, \sigma)$ is a GBFS, and $L^{p',q'}(\Sigma, \sigma)$ is its Köthe dual.

Example 1. For $p \in (1, \infty)$, the Lebesgue space $L^{p}(\Sigma, \sigma)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, \sigma)$, where $p' := \frac{p}{p-1} \in (1, \infty)$.

Example 2. Given $p \in (1, \infty)$, and $w \in A_p(\Sigma, \sigma)$, the Muckenhoupt weighted Lebesgue space $L^p(\Sigma, w)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, w')$, where $w' := w^{1-p'} \in A_{p'}(\Sigma, \sigma)$.

Example 3. Let $p(\cdot) : \Sigma \to (1, \infty)$ be a σ -measurable function. Then the variable exponent Lebesgue space $L^{p(\cdot)}(\Sigma, \sigma)$ is a GBFS, and $L^{p'(\cdot)}(\Sigma, \sigma)$ is its Köthe dual, where $p'(\cdot) = \frac{p(\cdot)}{p(\cdot)-1}$.

Example 4. For $p \in (1, \infty)$ and $q \in [1, \infty]$, the Lorentz space $L^{p,q}(\Sigma, \sigma)$ is a GBFS, and $L^{p',q'}(\Sigma, \sigma)$ is its Köthe dual.

Example 5. Fix $p \in (1, \infty)$, $\lambda \in (0, n-1)$. The Morrey space $M^{p,\lambda}(\Sigma, \sigma)$ is a GBFS, and its Köthe dual is the Block space $\mathcal{B}^{p',\lambda}(\Sigma, \sigma)$.

Example 1. For $p \in (1, \infty)$, the Lebesgue space $L^{p}(\Sigma, \sigma)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, \sigma)$, where $p' := \frac{p}{p-1} \in (1, \infty)$.

Example 2. Given $p \in (1, \infty)$, and $w \in A_p(\Sigma, \sigma)$, the Muckenhoupt weighted Lebesgue space $L^p(\Sigma, w)$ is a GBFS, and its Köthe dual is $L^{p'}(\Sigma, w')$, where $w' := w^{1-p'} \in A_{p'}(\Sigma, \sigma)$.

Example 3. Let $p(\cdot) : \Sigma \to (1, \infty)$ be a σ -measurable function. Then the variable exponent Lebesgue space $L^{p(\cdot)}(\Sigma, \sigma)$ is a GBFS, and $L^{p'(\cdot)}(\Sigma, \sigma)$ is its Köthe dual, where $p'(\cdot) = \frac{p(\cdot)}{p(\cdot)-1}$.

Example 4. For $p \in (1, \infty)$ and $q \in [1, \infty]$, the Lorentz space $L^{p,q}(\Sigma, \sigma)$ is a GBFS, and $L^{p',q'}(\Sigma, \sigma)$ is its Köthe dual.

Example 5. Fix $p \in (1, \infty)$, $\lambda \in (0, n-1)$. The Morrey space $M^{p,\lambda}(\Sigma, \sigma)$ is a GBFS, and its Köthe dual is the Block space $\mathcal{B}^{p',\lambda}(\Sigma, \sigma)$.

Other function spaces: Herz spaces, Orlicz spaces, Zygmund spaces, Muckenhoupt weighted Morrey and Block spaces, ...

Pedro Takemura (BU)

Fix an unbounded Ahlfors regular set $\Sigma \subseteq \mathbb{R}^n$, and let $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Recall that the Hardy-Littlewood maximal operator \mathcal{M}_{Σ} on Σ acts on each $f \in \mathscr{M}(\Sigma, \sigma)$ according to

$$(\mathcal{M}_{\Sigma}f)(x) := \sup_{R>0} \oint_{\Delta(x,R)} |f| \, d\sigma \quad \text{for each } x \in \Sigma.$$

Fix an unbounded Ahlfors regular set $\Sigma \subseteq \mathbb{R}^n$, and let $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Recall that the Hardy-Littlewood maximal operator \mathcal{M}_{Σ} on Σ acts on each $f \in \mathcal{M}(\Sigma, \sigma)$ according to

$$(\mathcal{M}_{\Sigma}f)(x) := \sup_{R>0} \oint_{\Delta(x,R)} |f| \, d\sigma \quad \text{for each } x \in \Sigma.$$

Assume X is a GBFS on (Σ, σ) and suppose \mathcal{M}_{Σ} is bounded on X'. With the family $\{C_k\}_{k \in \mathbb{N}_0}$ as before, for each $f \in \mathscr{M}(\Sigma, \sigma)$ define

Fix an unbounded Ahlfors regular set $\Sigma \subseteq \mathbb{R}^n$, and let $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Recall that the Hardy-Littlewood maximal operator \mathcal{M}_{Σ} on Σ acts on each $f \in \mathcal{M}(\Sigma, \sigma)$ according to

$$(\mathcal{M}_{\Sigma}f)(x) := \sup_{R>0} \oint_{\Delta(x,R)} |f| \, d\sigma \quad \text{for each } x \in \Sigma.$$

Assume X is a GBFS on (Σ, σ) and suppose \mathcal{M}_{Σ} is bounded on X'. With the family $\{C_k\}_{k \in \mathbb{N}_0}$ as before, for each $f \in \mathscr{M}(\Sigma, \sigma)$ define

$$\|f\|_{\mathcal{A}_{\mathbb{X}}(\Sigma,\sigma)} := \sum_{k=0}^{\infty} \frac{\sigma(\Delta(x_{0}, 2^{k+1}_{*}))}{\|\mathbb{1}_{\Delta(x_{0}, 2^{k+1}_{*})}\|_{\mathbb{X}}} \|f \cdot \mathbb{1}_{C_{k}}\|_{\mathbb{X}} \in [0, \infty].$$

Fix an unbounded Ahlfors regular set $\Sigma \subseteq \mathbb{R}^n$, and let $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Recall that the Hardy-Littlewood maximal operator \mathcal{M}_{Σ} on Σ acts on each $f \in \mathcal{M}(\Sigma, \sigma)$ according to

$$(\mathcal{M}_{\Sigma}f)(x) := \sup_{R>0} \oint_{\Delta(x,R)} |f| \, d\sigma \quad \text{for each } x \in \Sigma.$$

Assume X is a GBFS on (Σ, σ) and suppose \mathcal{M}_{Σ} is bounded on X'. With the family $\{C_k\}_{k \in \mathbb{N}_0}$ as before, for each $f \in \mathscr{M}(\Sigma, \sigma)$ define

$$\|f\|_{\mathcal{A}_{\mathbb{X}}(\Sigma,\sigma)} := \sum_{k=0}^{\infty} \frac{\sigma(\Delta(x_{0}, 2^{k+1}_{*}))}{\|\mathbb{1}_{\Delta(x_{0}, 2^{k+1}_{*})}\|_{\mathbb{X}}} \|f \cdot \mathbb{1}_{C_{k}}\|_{\mathbb{X}} \in [0, \infty].$$

Define the X-based Beurling space on Σ as

$$A_{\mathbb{X}}(\Sigma,\sigma) := \big\{ f \in \mathscr{M}(\Sigma,\sigma) : \|f\|_{A_{\mathbb{X}}(\Sigma,\sigma)} < \infty \big\}.$$

Fix an unbounded Ahlfors regular set $\Sigma \subseteq \mathbb{R}^n$, and let $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Recall that the Hardy-Littlewood maximal operator \mathcal{M}_{Σ} on Σ acts on each $f \in \mathcal{M}(\Sigma, \sigma)$ according to

$$(\mathcal{M}_{\Sigma}f)(x) := \sup_{R>0} \oint_{\Delta(x,R)} |f| \, d\sigma \quad ext{for each } x \in \Sigma.$$

Assume X is a GBFS on (Σ, σ) and suppose \mathcal{M}_{Σ} is bounded on X'. With the family $\{C_k\}_{k \in \mathbb{N}_0}$ as before, for each $f \in \mathscr{M}(\Sigma, \sigma)$ define

$$\|f\|_{\mathcal{A}_{\mathbb{X}}(\Sigma,\sigma)} := \sum_{k=0}^{\infty} \frac{\sigma(\Delta(x_{0}, 2^{k+1}_{*}))}{\|\mathbb{1}_{\Delta(x_{0}, 2^{k+1}_{*})}\|_{\mathbb{X}}} \|f \cdot \mathbb{1}_{C_{k}}\|_{\mathbb{X}} \in [0, \infty].$$

Define the X-based Beurling space on Σ as

$$A_{\mathbb{X}}(\Sigma,\sigma) := \big\{ f \in \mathscr{M}(\Sigma,\sigma) : \|f\|_{A_{\mathbb{X}}(\Sigma,\sigma)} < \infty \big\}.$$

<u>Basic Fact:</u> $A_{\mathbb{X}}(\Sigma, \sigma) \hookrightarrow L^{1}(\Sigma, \sigma) \cap \mathbb{X}$ continuously.

Pedro Takemura (BU)

New Brand of Hardy Spaces and the NBVP

The Hardy Space Associated with $A_{\rm X}$

Let X be a GBFS on (Σ, σ) and suppose \mathcal{M}_{Σ} is bounded on X'. Having fixed $\gamma \in (0, 1)$, define the X-based Beurling-Hardy space on Σ as

$$\mathrm{HA}_{\mathbb{X}}(\Sigma,\sigma) := \big\{ f \in L^{1}_{\mathrm{loc}}(\Sigma,\sigma) : f_{\gamma}^{\#} \in \mathrm{A}_{\mathbb{X}}(\Sigma,\sigma) \big\},\,$$

and equip this space with the norm

$$\|f\|_{\operatorname{HA}_{\mathbb{X}}(\Sigma,\sigma)} := \|f_{\gamma}^{\#}\|_{\operatorname{A}_{\mathbb{X}}(\Sigma,\sigma)} ext{ for each } f \in \operatorname{HA}_{\mathbb{X}}(\Sigma,\sigma).$$

The Hardy Space Associated with $A_{\rm X}$

Let X be a GBFS on (Σ, σ) and suppose \mathcal{M}_{Σ} is bounded on X'. Having fixed $\gamma \in (0, 1)$, define the X-based Beurling-Hardy space on Σ as

$$\mathrm{HA}_{\mathbb{X}}(\Sigma,\sigma) := \big\{ f \in L^{1}_{\mathrm{loc}}(\Sigma,\sigma) : f_{\gamma}^{\#} \in \mathrm{A}_{\mathbb{X}}(\Sigma,\sigma) \big\},\$$

and equip this space with the norm

$$\|f\|_{\operatorname{HA}_{\mathbb{X}}(\Sigma,\sigma)} := \|f_{\gamma}^{\#}\|_{\operatorname{A}_{\mathbb{X}}(\Sigma,\sigma)} ext{ for each } f \in \operatorname{HA}_{\mathbb{X}}(\Sigma,\sigma).$$

<u>Fact</u>: Elements from $\operatorname{HA}_{\mathbb{X}}(\Sigma, \sigma)$ are actually L^1 functions, and in fact $\operatorname{HA}_{\mathbb{X}}(\Sigma, \sigma) \hookrightarrow H^1(\Sigma, \sigma) \cap \mathbb{X}$ continuously.

Atomic Theory on $\mathrm{HA}_{\mathbb{X}}$

Call a σ -measurable function $a : \Sigma \to \mathbb{R}$ an x_0 -central X-atom provided there exists $R \ge 2_*$ such that

$$\operatorname{supp} a \subseteq \Delta(x_0, R), \quad \|a\|_{\mathbf{X}} \leq \frac{\|\mathbb{1}_{\Delta(x_0, R)}\|_{\mathbf{X}}}{\sigma(\Delta(x_0, R))}, \quad \int_{\Sigma} a \, d\sigma = 0.$$

Atomic Theory on $HA_{\mathbb{X}}$

Call a σ -measurable function $a : \Sigma \to \mathbb{R}$ an x_0 -central X-atom provided there exists $R \ge 2_*$ such that

$$\operatorname{supp} a \subseteq \Delta(x_0, R), \quad \|a\|_{\mathbf{X}} \leq \frac{\|\mathbb{1}_{\Delta(x_0, R)}\|_{\mathbf{X}}}{\sigma(\Delta(x_0, R))}, \quad \int_{\Sigma} a \, d\sigma = 0.$$

Proposition 1 (M. Mitrea, P.T.)

Let X be a GBFS on (Σ, σ) and suppose \mathcal{M}_{Σ} is bounded both on X and X'. Then for any $f \in L^1(\Sigma, \sigma)$ it follows that, in a quantitative fashion,

$$f \in \operatorname{HA}_{\mathbb{X}}(\Sigma, \sigma) \iff f = \sum_{k=0}^{\infty} \lambda_k a_k \text{ in } L^1(\Sigma, \sigma)$$

for some sequence of x_0 -central X-atoms $\{a_k\}_{k \in \mathbb{N}_0}$, and some sequence $\{\lambda_k\}_{k \in \mathbb{N}_0} \in \ell^1(\mathbb{R})$.

Molecular Theory on HA_X

Fix $\varepsilon \in (0, \infty)$. Call a σ -measurable function $M : \Sigma \to \mathbb{R}$ an x_0 -central $(\mathbb{X}, \varepsilon)$ -molecule if there exists $R \ge 2_*$ such that for all $k \in \mathbb{N}_0$ one has

$$\|\boldsymbol{M}\cdot\mathbbm{1}_{\boldsymbol{A}_{k}(\boldsymbol{x}_{0},\boldsymbol{R})}\|_{\mathbb{X}}\leq 2^{-k(n-1)\varepsilon}_{*}\frac{\|\mathbbm{1}_{\Delta(\boldsymbol{x}_{0},2^{k}_{*}\boldsymbol{R})}\|_{\mathbb{X}}}{\sigma\big(\Delta(\boldsymbol{x}_{0},2^{k}_{*}\boldsymbol{R})\big)} \quad \text{and} \quad \int_{\Sigma}\boldsymbol{M}\,d\sigma=0,$$

where $A_0(x_0, R) := \Delta(x_0, R)$ and $A_k(x_0, R) := \Delta(x_0, 2_*^k R) \setminus \Delta(x_0, 2_*^{k-1} R)$ for $k \in \mathbb{N}$.

Molecular Theory on $\mathrm{HA}_{\mathbb{X}}$

Fix $\varepsilon \in (0, \infty)$. Call a σ -measurable function $M : \Sigma \to \mathbb{R}$ an x_0 -central $(\mathbb{X}, \varepsilon)$ -molecule if there exists $R \ge 2_*$ such that for all $k \in \mathbb{N}_0$ one has

$$\|\boldsymbol{M}\cdot\mathbbm{1}_{\boldsymbol{A}_{k}(\boldsymbol{x}_{0},\boldsymbol{R})}\|_{\mathbb{X}}\leq 2^{-k(n-1)\varepsilon}_{*}\frac{\|\mathbbm{1}_{\Delta(\boldsymbol{x}_{0},2^{k}_{*}\boldsymbol{R})}\|_{\mathbb{X}}}{\sigma\big(\Delta(\boldsymbol{x}_{0},2^{k}_{*}\boldsymbol{R})\big)} \quad \text{and} \quad \int_{\Sigma}\boldsymbol{M}\,d\sigma=0,$$

where $A_0(x_0, R) := \Delta(x_0, R)$ and $A_k(x_0, R) := \Delta(x_0, 2_*^k R) \setminus \Delta(x_0, 2_*^{k-1} R)$ for $k \in \mathbb{N}$.

Proposition 2 (M. Mitrea, P.T.)

Let X be a GBFS on (Σ, σ) and suppose \mathcal{M}_{Σ} is bounded both on Xand X'. Fix $\varepsilon \in (0, \infty)$. Then there exists some constant $C \in (0, \infty)$ such that for every x_0 -central (X, ε) -molecule M on Σ one has that

M belongs to $\operatorname{HA}_{\mathbb{X}}(\Sigma, \sigma)$ and $\|M\|_{\operatorname{HA}_{\mathbb{X}}(\Sigma, \sigma)} \leq C$.

Nontangential Maximal Function Estimates

From now on, fix a UR-domain $\Omega \subseteq \mathbb{R}^n$ with $\partial \Omega$ unbounded, and set $\sigma := \mathcal{H}^{n-1} | \partial \Omega$. Also, denote by ν the GMT outward unit normal to Ω .

Nontangential Maximal Function Estimates

From now on, fix a UR-domain $\Omega \subseteq \mathbb{R}^n$ with $\partial \Omega$ unbounded, and set $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$. Also, denote by ν the GMT outward unit normal to Ω .

Theorem 1 (M. Mitrea, P.T.)

Let X be a GBFS on $(\partial\Omega, \sigma)$ and suppose $\mathcal{M}_{\partial\Omega}$ is bounded both on X and X'. Consider a kernel $k \in \mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\})$ that is odd and positive homogeneous of degree 1 - n. Introduce the boundary-to-domain convolution type SIO \mathcal{T} acting on each function $f \in L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})$ as

$$\mathcal{T}f(x) := \int_{\partial\Omega} k(x-y)f(y) \, d\sigma(y) \, ext{ for each } x \in \Omega.$$

Nontangential Maximal Function Estimates

From now on, fix a UR-domain $\Omega \subseteq \mathbb{R}^n$ with $\partial \Omega$ unbounded, and set $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$. Also, denote by ν the GMT outward unit normal to Ω .

Theorem 1 (M. Mitrea, P.T.)

Let X be a GBFS on $(\partial\Omega, \sigma)$ and suppose $\mathcal{M}_{\partial\Omega}$ is bounded both on X and X'. Consider a kernel $k \in \mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\})$ that is odd and positive homogeneous of degree 1 - n. Introduce the boundary-to-domain convolution type SIO \mathcal{T} acting on each function $f \in L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})$ as

$$\mathcal{T}f(x) := \int_{\partial\Omega} k(x-y)f(y) \, d\sigma(y) \, ext{ for each } x \in \Omega.$$

Then there exists $C \in (0,\infty)$ such that for all $f \in HA_{\mathbb{X}}(\partial\Omega,\sigma)$ one has

 $\|\mathcal{N}_\kappa(\mathcal{T}f)\|_{\mathrm{A}_{\mathbb{X}}(\partial\Omega,\sigma)} \leq oldsymbol{C}\|f\|_{\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)}.$

Boundedness of SIOs on $\mathrm{HA}_{\mathbb{X}}$

Theorem 2 (M. Mitrea, P.T.)

Let X be a GBFS on $(\partial\Omega, \sigma)$ and suppose $\mathcal{M}_{\partial\Omega}$ is bounded both on X and X'. Consider a kernel $k \in \mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\})$ that is even and positive homogeneous of degree -n. Following [GHA], introduce the chord-dot-normal SIO $T^{\#}$ acting on each $f \in L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})$ according to

$$T^{\#}f(x) := \lim_{\varepsilon \to 0^{+}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \langle \nu(x), y - x \rangle k(x-y) f(y) \, d\sigma(y) \text{ at } \sigma \text{-a.e. } x \in \partial \Omega.$$

Boundedness of SIOs on $\mathrm{HA}_{\mathbb{X}}$

Theorem 2 (M. Mitrea, P.T.)

Let X be a GBFS on $(\partial\Omega, \sigma)$ and suppose $\mathcal{M}_{\partial\Omega}$ is bounded both on X and X'. Consider a kernel $k \in \mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\})$ that is even and positive homogeneous of degree -n. Following [GHA], introduce the chord-dot-normal SIO $T^{\#}$ acting on each $f \in L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})$ according to

$$T^{\#}f(x) := \lim_{\varepsilon \to 0^{+}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \langle \nu(x), y - x \rangle k(x-y) f(y) \, d\sigma(y) \text{ at } \sigma \text{-a.e. } x \in \partial \Omega.$$

Then the operator $T^{\#}$: $HA_{\mathbb{X}}(\partial\Omega, \sigma) \to HA_{\mathbb{X}}(\partial\Omega, \sigma)$ is well defined and bounded.

Boundedness of SIOs on $\mathrm{HA}_{\mathbb{X}}$

Theorem 2 (M. Mitrea, P.T.)

Let X be a GBFS on $(\partial\Omega, \sigma)$ and suppose $\mathcal{M}_{\partial\Omega}$ is bounded both on X and X'. Consider a kernel $k \in \mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\})$ that is even and positive homogeneous of degree -n. Following [GHA], introduce the chord-dot-normal SIO $T^{\#}$ acting on each $f \in L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})$ according to

$$T^{\#}f(x) := \lim_{\varepsilon \to 0^{+}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \langle \nu(x), y - x \rangle k(x-y) f(y) \, d\sigma(y) \text{ at } \sigma \text{-a.e. } x \in \partial \Omega.$$

Then the operator $T^{\#}$: $HA_{\mathbb{X}}(\partial\Omega, \sigma) \to HA_{\mathbb{X}}(\partial\Omega, \sigma)$ is well defined and bounded. Moreover, there exists some $C \in (0, \infty)$ such that

 $\|\mathcal{T}^{\#}\|_{\operatorname{HA}_{\mathbb{X}}(\partial\Omega,\sigma)\to\operatorname{HA}_{\mathbb{X}}(\partial\Omega,\sigma)} \leq \mathcal{C}\|\nu\|_{\operatorname{BMO}(\partial\Omega,\sigma)}\ln\left(\boldsymbol{e}/\|\nu\|_{\operatorname{BMO}(\partial\Omega,\sigma)}\right).$

• Remark: The estimate

 $\|\mathcal{T}^{\#}\|_{\operatorname{HA}_{\mathbb{X}}(\partial\Omega,\sigma)\to\operatorname{HA}_{\mathbb{X}}(\partial\Omega,\sigma)} \leq \mathcal{C}\|\nu\|_{\operatorname{BMO}(\partial\Omega,\sigma)}\ln\left(\boldsymbol{e}/\|\nu\|_{\operatorname{BMO}(\partial\Omega,\sigma)}\right)$

is one of the key ingredients in the proof of solvability of our Neumann Problem (HA_X-NBVP), since we want to invert $-\frac{1}{2}I + K_I^{\#}$ on HA_X.

• Remark: The estimate

 $\| \mathcal{T}^{\#} \|_{\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma) \to \mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)} \leq \mathcal{C} \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \ln \left(\mathbf{e} / \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \right)$

is one of the key ingredients in the proof of solvability of our Neumann Problem (HA_X-NBVP), since we want to invert $-\frac{1}{2}I + K_I^{\#}$ on HA_X.

• Comments about the proof:

♦ The atomic and molecular theory of HA_X plays a crucial role in the proof of the above estimate. In fact, the main idea is to prove that $T^{\#}$ maps central X-atoms into central (X, ε) -molecules up to a fixed multiple of $\|\nu\|_{BMO(\partial\Omega,\sigma)} \ln (e/\|\nu\|_{BMO(\partial\Omega,\sigma)})$.

• Remark: The estimate

 $\| \mathcal{T}^{\#} \|_{\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma) \to \mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)} \leq \mathcal{C} \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \ln \left(\mathbf{e} / \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \right)$

is one of the key ingredients in the proof of solvability of our Neumann Problem (HA_X-NBVP), since we want to invert $-\frac{1}{2}I + K_I^{\#}$ on HA_X.

• Comments about the proof:

- ♦ The atomic and molecular theory of HA_X plays a crucial role in the proof of the above estimate. In fact, the main idea is to prove that $T^{\#}$ maps central X-atoms into central (X, ε)-molecules up to a fixed multiple of $\|\nu\|_{BMO(\partial\Omega,\sigma)} \ln (e/\|\nu\|_{BMO(\partial\Omega,\sigma)})$.
- ♦ Characterization of BMO in terms of GBFS: If X is a GBFS on $(\partial \Omega, \sigma)$ and $\mathcal{M}_{\partial \Omega}$ is bounded both on X and X', then for every $f \in L^1_{loc}(\partial \Omega, \sigma)$ one has

$$\|f\|_{\mathrm{BMO}_{\mathbb{X}}(\partial\Omega,\sigma)} := \sup_{\Delta \subseteq \partial\Omega} \frac{\left\| (f - f_{\Delta} f \, d\sigma) \cdot \mathbb{1}_{\Delta} \right\|_{\mathbb{X}}}{\|\mathbb{1}_{\Delta}\|_{\mathbb{X}}} \approx \|f\|_{\mathrm{BMO}(\partial\Omega,\sigma)}.$$

Weakly Elliptic Systems

Let $n \in \mathbb{N}$, with $n \ge 2$, and $M \in \mathbb{N}$. Fix a second-order, homogeneous, constant complex coefficient, weakly elliptic $M \times M$ system of the format

$$L := A_{jk} \partial_j \partial_k$$
 in \mathbb{R}^n

with each $A_{jk} \in \mathbb{C}^{M \times M}$. The weak ellipticity of the system *L* means that the characteristic matrix

$$L(\xi) := -\xi_j \xi_k A_{jk}$$
 is invertible for all $\xi \in \mathbb{R}^n \setminus \{0\}$.
Weakly Elliptic Systems

Let $n \in \mathbb{N}$, with $n \ge 2$, and $M \in \mathbb{N}$. Fix a second-order, homogeneous, constant complex coefficient, weakly elliptic $M \times M$ system of the format

$$L := A_{jk} \partial_j \partial_k$$
 in \mathbb{R}^n

with each $A_{jk} \in \mathbb{C}^{M \times M}$. The weak ellipticity of the system *L* means that the characteristic matrix

$$L(\xi) := -\xi_j \xi_k A_{jk}$$
 is invertible for all $\xi \in \mathbb{R}^n \setminus \{0\}$.

Call $A := (A_{jk})_{1 \le j,k \le n}$ a coefficient tensor for *L*, and write $A \in \mathfrak{A}_L$.

Weakly Elliptic Systems

Let $n \in \mathbb{N}$, with $n \ge 2$, and $M \in \mathbb{N}$. Fix a second-order, homogeneous, constant complex coefficient, weakly elliptic $M \times M$ system of the format

$$L := A_{jk} \partial_j \partial_k$$
 in \mathbb{R}^n

with each $A_{jk} \in \mathbb{C}^{M \times M}$. The weak ellipticity of the system *L* means that the characteristic matrix

$$L(\xi) := -\xi_j \xi_k A_{jk}$$
 is invertible for all $\xi \in \mathbb{R}^n \setminus \{0\}$.

Call $A := (A_{jk})_{1 \le j,k \le n}$ a coefficient tensor for *L*, and write $A \in \mathfrak{A}_L$. For each $\kappa \in (0,\infty)$, define the conormal derivative of $u : \Omega \to \mathbb{C}^M$ associated with $A \in \mathfrak{A}_L$ as $\partial_{\nu}^A u := \nu_j A_{jk} (\partial_k u) \Big|_{\partial \Omega}^{\kappa-n.t}$.

Weakly Elliptic Systems

Let $n \in \mathbb{N}$, with $n \ge 2$, and $M \in \mathbb{N}$. Fix a second-order, homogeneous, constant complex coefficient, weakly elliptic $M \times M$ system of the format

$$L := A_{jk} \partial_j \partial_k$$
 in \mathbb{R}^n

with each $A_{jk} \in \mathbb{C}^{M \times M}$. The weak ellipticity of the system *L* means that the characteristic matrix

$$L(\xi) := -\xi_j \xi_k A_{jk}$$
 is invertible for all $\xi \in \mathbb{R}^n \setminus \{0\}$.

Call $A := (A_{jk})_{1 \le j,k \le n}$ a coefficient tensor for *L*, and write $A \in \mathfrak{A}_L$. For each $\kappa \in (0,\infty)$, define the conormal derivative of $u : \Omega \to \mathbb{C}^M$ associated with $A \in \mathfrak{A}_L$ as $\partial_{\nu}^A u := \nu_j A_{jk} (\partial_k u) \Big|_{\partial\Omega}^{\kappa-n.t}$.

Fundamental Fact (cf. [Mi18]): Any weakly elliptic system *L* admits a "nicely behaved" *matrix-valued fundamental solution E*_L.

(

Distinguished Coefficient Tensors

For each coefficient tensor $A \in \mathfrak{A}_L$ and $\xi \in \mathbb{R}^n$, introduce the *directional derivative operator* along ξ associated with A as

$$\partial_{\xi}^{\mathcal{A}} := \xi_j \mathcal{A}_{jk} \partial_k.$$

Distinguished Coefficient Tensors

For each coefficient tensor $A \in \mathfrak{A}_L$ and $\xi \in \mathbb{R}^n$, introduce the *directional derivative operator* along ξ associated with A as

$$\partial_{\xi}^{\mathbf{A}} := \xi_j \mathbf{A}_{jk} \partial_k.$$

Call *A* a *distinguished coefficient tensor* for a weakly elliptic system *L* if $\partial_{\xi}^{A^{\top}} E_{L^{\top}}(x) = 0$ for all $x, \xi \in \mathbb{R}^n \setminus \{0\}$ with $x \cdot \xi = 0$.

Denote by $\mathfrak{A}_l^{\text{dis}}$ the family of all distinguished coefficient tensors for *L*.

Distinguished Coefficient Tensors

For each coefficient tensor $A \in \mathfrak{A}_L$ and $\xi \in \mathbb{R}^n$, introduce the *directional derivative operator* along ξ associated with A as

$$\partial_{\xi}^{\mathbf{A}} := \xi_j \mathbf{A}_{jk} \partial_k.$$

Call *A* a *distinguished coefficient tensor* for a weakly elliptic system *L* if $\partial_{\xi}^{A^{\top}} E_{L^{\top}}(x) = 0$ for all $x, \xi \in \mathbb{R}^n \setminus \{0\}$ with $x \cdot \xi = 0$.

Denote by $\mathfrak{A}_{L}^{\text{dis}}$ the family of all distinguished coefficient tensors for *L*. The (transpose) double layer potential $K_{A}^{\#}$ associated with $A \in \mathfrak{A}_{L}$ acts on each $g \in \left[L^{1}\left(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}}\right)\right]^{M}$, at σ -a.e. $x \in \partial\Omega$, according to $K_{A}^{\#}g(x) := \lim_{\varepsilon \to 0^{+}} \int_{\substack{y \in \partial\Omega \\ |x-y| > \varepsilon}} \partial_{\nu(x)}^{A^{\top}} \left[E_{L^{\top}}(x-y)\right]g(y) \, d\sigma(y).$

Distinguished Coefficient Tensors

For each coefficient tensor $A \in \mathfrak{A}_L$ and $\xi \in \mathbb{R}^n$, introduce the *directional derivative operator* along ξ associated with A as

$$\partial_{\xi}^{\mathcal{A}} := \xi_j \mathcal{A}_{jk} \partial_k.$$

Call *A* a *distinguished coefficient tensor* for a weakly elliptic system *L* if $\partial_{\xi}^{A^{\top}} E_{L^{\top}}(x) = 0$ for all $x, \xi \in \mathbb{R}^n \setminus \{0\}$ with $x \cdot \xi = 0$.

Denote by $\mathfrak{A}_{L}^{\text{dis}}$ the family of all distinguished coefficient tensors for *L*. The (transpose) double layer potential $K_{A}^{\#}$ associated with $A \in \mathfrak{A}_{L}$ acts on each $g \in [L^{1}(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})]^{M}$, at σ -a.e. $x \in \partial\Omega$, according to $K_{A}^{\#}g(x) := \lim_{\varepsilon \to 0^{+}} \int_{\substack{y \in \partial\Omega \\ |x-y| > \varepsilon}} \partial_{\nu(x)}^{A^{\top}} [E_{L^{\top}}(x-y)]g(y) d\sigma(y).$

 $A \in \mathfrak{A}_L^{dis}$ if and only if $K_A^{\#}$ is a SIO of chord-dot-normal type (cf. [GHA]).

Back to the Neumann Problem

Let X be a GBFS on $(\partial\Omega, \sigma)$ and suppose $\mathcal{M}_{\partial\Omega}$ is bounded both on X and X'. Fix a system *L* as before written for some choice of $A \in \mathfrak{A}_L$. Recall the formulation of the Neumann Problem with boundary data in the X-based Beurling-Hardy space:

$$(\mathrm{HA}_{\mathbb{X}}-\mathrm{NBVP}) \begin{cases} u \in \left[\mathscr{C}^{\infty}(\Omega)\right]^{M}, & Lu = 0 \text{ in } \Omega, \\ \mathcal{N}_{\kappa}(\nabla u) \in \mathbf{A}_{\mathbb{X}}(\partial\Omega, \sigma), \\ \partial_{\nu}^{A}u = f \in \left[\mathrm{HA}_{\mathbb{X}}(\partial\Omega, \sigma)\right]^{M}. \end{cases}$$

Back to the Neumann Problem

Let X be a GBFS on $(\partial \Omega, \sigma)$ and suppose $\mathcal{M}_{\partial \Omega}$ is bounded both on X and X'. Fix a system *L* as before written for some choice of $A \in \mathfrak{A}_L$. Recall the formulation of the Neumann Problem with boundary data in the X-based Beurling-Hardy space:

$$(\mathrm{HA}_{\mathbb{X}}-\mathrm{NBVP}) \begin{cases} u \in \left[\mathscr{C}^{\infty}(\Omega)\right]^{M}, & Lu = 0 \text{ in } \Omega, \\ \mathcal{N}_{\kappa}(\nabla u) \in \mathbf{A}_{\mathbb{X}}(\partial\Omega, \sigma), \\ \partial_{\nu}^{A}u = f \in \left[\mathrm{HA}_{\mathbb{X}}(\partial\Omega, \sigma)\right]^{M}. \end{cases}$$

<u>Question</u>: Is $HA_{\mathbb{X}}(\partial\Omega, \sigma)$ the correct space of boundary data in the formulation of this problem?

Fatou-type Result

Theorem 3 (M. Mitrea, P.T.)

Suppose X is a GBFS on $(\partial \Omega, \sigma)$ such that $\mathcal{M}_{\partial \Omega}$ is bounded both on X and X'. Assume *u* is a vector-valued function in Ω satisfying

$$egin{aligned} & u \in ig[\mathscr{C}^\infty(\Omega) ig]^M, \quad Lu = 0 \quad ext{in } \Omega \ & ext{and} \quad \mathcal{N}_\kappa(
abla u) \in \mathrm{A}_{\mathrm{X}}(\partial\Omega,\sigma). \end{aligned}$$

Fatou-type Result

Theorem 3 (M. Mitrea, P.T.)

Suppose X is a GBFS on $(\partial \Omega, \sigma)$ such that $\mathcal{M}_{\partial \Omega}$ is bounded both on X and X'. Assume *u* is a vector-valued function in Ω satisfying

$$egin{aligned} & u \in ig[\mathscr{C}^\infty(\Omega) ig]^M, \quad Lu = 0 \quad ext{in } \Omega \ & ext{and} \quad \mathcal{N}_\kappa(
abla u) \in \mathrm{A}_{\mathrm{X}}(\partial\Omega,\sigma). \end{aligned}$$

Then $(\nabla u)\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists at σ -a.e. point on $\partial\Omega$, and for each $A \in \mathfrak{A}_L$ the conormal derivative $\partial_{\nu}^{A} u$ belongs to $[\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)]^{M}$ quantitatively, i.e., there exists $C \in (0, \infty)$, independent of u, such that

$$\|\partial_{\nu}^{\mathcal{A}}u\|_{[\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{\mathcal{M}}}\leq \mathcal{C}\|\mathcal{N}_{\kappa}(
abla u)\|_{\mathrm{A}_{\mathbb{X}}(\partial\Omega,\sigma)}.$$

Fatou-type Result

Theorem 3 (M. Mitrea, P.T.)

Suppose X is a GBFS on $(\partial \Omega, \sigma)$ such that $\mathcal{M}_{\partial \Omega}$ is bounded both on X and X'. Assume *u* is a vector-valued function in Ω satisfying

$$egin{aligned} & u \in ig[\mathscr{C}^\infty(\Omega) ig]^M, \quad Lu = 0 \quad ext{in } \Omega \ & ext{and} \quad \mathcal{N}_\kappa(
abla u) \in \mathrm{A}_{\mathrm{X}}(\partial\Omega,\sigma). \end{aligned}$$

Then $(\nabla u)\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists at σ -a.e. point on $\partial\Omega$, and for each $A \in \mathfrak{A}_L$ the conormal derivative $\partial_{\nu}^{A} u$ belongs to $[\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)]^{M}$ quantitatively, i.e., there exists $C \in (0, \infty)$, independent of u, such that

$$\|\partial_{\nu}^{\mathcal{A}}u\|_{[\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{\mathcal{M}}} \leq C\|\mathcal{N}_{\kappa}(\nabla u)\|_{\mathrm{A}_{\mathbb{X}}(\partial\Omega,\sigma)}.$$

This ensures that the boundary condition in $({\rm HA}_{\mathbb X}\text{-}{\rm NBVP})$ is meaningfully formulated.

Pedro Takemura (BU)

The Method of Layer Potentials

Consider the (modified) single layer potential whose action on each function $g \in \left[L^1\left(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}}\right)\right]^M$ is given by

$$\mathscr{S}_{\mathrm{mod}} g(x) := \int_{\partial\Omega} \big\{ E_L(x-y) - E_L(y) \mathbb{1}_{\mathbb{R}^n \setminus \mathcal{B}(0,1)}(y) \big\} g(y) \, d\sigma(y) \quad \forall \; x \in \Omega.$$

The Method of Layer Potentials

Consider the (modified) single layer potential whose action on each function $g \in \left[L^1\left(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}}\right)\right]^M$ is given by

$$\mathscr{S}_{\mathrm{mod}}g(x) := \int_{\partial\Omega} \big\{ E_L(x-y) - E_L(y) \mathbb{1}_{\mathbb{R}^n \setminus B(0,1)}(y) \big\} g(y) \, d\sigma(y) \quad \forall \ x \in \Omega.$$

Fix some function $g \in [HA_X(\partial\Omega, \sigma)]^M$ (to be determined later). Setting $u := \mathscr{S}_{mod}g$ in Ω ensures

$$u \in [\mathscr{C}^{\infty}(\Omega)]^M$$
 and $Lu = 0$ in Ω .

So, smoothness and PDE conditions in $(HA_{\mathbb{X}}-NBVP)$ are OK!

Moreover, such a choice of *u* satisfies

$$(\nabla u)(x) = \int_{\partial\Omega} (\nabla E_L)(x-y)g(y) \, d\sigma(y) \quad \forall \ x \in \Omega.$$

Moreover, such a choice of u satisfies

$$(\nabla u)(x) = \int_{\partial\Omega} (\nabla E_L)(x-y)g(y) \, d\sigma(y) \quad \forall \ x \in \Omega.$$

Since ∇E_L is smooth in $\mathbb{R}^n \setminus \{0\}$, odd, and positive homogeneous of degree 1 - n, we may invoke Theorem 1 to ensure that

 $\|\mathcal{N}_{\kappa}(
abla u)\|_{\mathrm{A}_{\mathbb{X}}(\partial\Omega,\sigma)} \leq \mathcal{C}\|g\|_{[\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{M}} < \infty.$

Hence, $\mathcal{N}_{\kappa}(\nabla u) \in A_{\mathbb{X}}(\partial\Omega, \sigma)$. So, size condition in (HA_X-NBVP) is OK!

Moreover, such a choice of u satisfies

$$(\nabla u)(x) = \int_{\partial\Omega} (\nabla E_L)(x-y)g(y) \, d\sigma(y) \quad \forall \ x \in \Omega.$$

Since ∇E_L is smooth in $\mathbb{R}^n \setminus \{0\}$, odd, and positive homogeneous of degree 1 - n, we may invoke Theorem 1 to ensure that

 $\|\mathcal{N}_{\kappa}(
abla u)\|_{\mathrm{A}_{\mathbb{X}}(\partial\Omega,\sigma)} \leq \mathcal{C}\|g\|_{[\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{M}} < \infty.$

Hence, $\mathcal{N}_{\kappa}(\nabla u) \in A_{\mathbb{X}}(\partial\Omega, \sigma)$. So, size condition in (HA_X-NBVP) is OK!

Question: What does it take of *g* for the function $u = \mathscr{S}_{mod}g$ to satisfy the boundary condition $\partial_{\nu}^{A}u = f$?

Work done in [GHA] implies that for each $g \in [L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})]^M$ one has the jump-relation

$$\partial_{\nu}^{\mathcal{A}}(\mathscr{S}_{\mathrm{mod}}g) = \left(-\frac{1}{2}I + K_{\mathcal{A}^{\top}}^{\#}\right)g.$$

Work done in [GHA] implies that for each $g \in [L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})]^M$ one has the jump-relation

$$\partial_{\nu}^{\mathcal{A}}(\mathscr{S}_{\mathrm{mod}}g) = \left(-\frac{1}{2}I + K_{\mathcal{A}^{\top}}^{\#}\right)g.$$

Thus, solving (HA_X-NBVP) is then reduced to finding $g \in [HA_X(\partial\Omega, \sigma)]^M$ satisfying

$$\left(-\frac{1}{2}I + K_{A^{\top}}^{\#}\right)g = f \in \left[\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)\right]^{M}.$$

Work done in [GHA] implies that for each $g \in [L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})]^M$ one has the jump-relation

$$\partial_{\nu}^{\mathcal{A}}(\mathscr{S}_{\mathrm{mod}}g) = \left(-\frac{1}{2}I + K_{\mathcal{A}^{\top}}^{\#}\right)g.$$

Thus, solving (HA_X-NBVP) is then reduced to finding $g \in [HA_X(\partial\Omega, \sigma)]^M$ satisfying

$$\left(-\frac{1}{2}I + K_{A^{\top}}^{\#}\right)g = f \in \left[\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)\right]^{M}.$$

• **Basic Issue:** Is $-\frac{1}{2}I + K_{A^{\top}}^{\#}$ invertible on $[HA_{X}(\partial\Omega, \sigma)]^{M}$?

By our Theorem 2, we have that $\mathcal{K}_{A^{\top}}^{\#} : [\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)]^{M} \to [\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)]^{M}$ boundedly and there exists $\mathcal{C} \in (0, \infty)$ such that

 $\| \mathcal{K}_{\mathcal{A}^{\top}}^{\#} \|_{[\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{M} \to [\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{M}} \leq \mathcal{C} \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \ln \left(\boldsymbol{e} / \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \right).$

By our Theorem 2, we have that $\mathcal{K}_{A^{\top}}^{\#} : [\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)]^{M} \to [\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)]^{M}$ boundedly and there exists $\mathcal{C} \in (0, \infty)$ such that

 $\| \mathcal{K}_{\mathcal{A}^{\top}}^{\#} \|_{[\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{M} \to [\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{M}} \leq \mathcal{C} \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \ln \left(\boldsymbol{e} / \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \right).$

If $\|\nu\|_{BMO(\partial\Omega,\sigma)}$ is sufficiently small ("gently sloped" condition), then the operator $-\frac{1}{2}I + K_{A^{\top}}^{\#}$ is invertible on the Banach space $[HA_{\mathbb{X}}(\partial\Omega,\sigma)]^{M}$ via a Neumann series.

By our Theorem 2, we have that $\mathcal{K}_{A^{\top}}^{\#} : [\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)]^{M} \to [\operatorname{HA}_{\mathbb{X}}(\partial\Omega, \sigma)]^{M}$ boundedly and there exists $\mathcal{C} \in (0, \infty)$ such that

 $\| \mathcal{K}_{\mathcal{A}^{\top}}^{\#} \|_{[\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{M} \to [\mathrm{HA}_{\mathbb{X}}(\partial\Omega,\sigma)]^{M}} \leq \mathcal{C} \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \ln \left(\boldsymbol{e} / \| \nu \|_{\mathrm{BMO}(\partial\Omega,\sigma)} \right).$

If $\|\nu\|_{BMO(\partial\Omega,\sigma)}$ is sufficiently small ("gently sloped" condition), then the operator $-\frac{1}{2}I + K_{A^{\top}}^{\#}$ is invertible on the Banach space $[HA_{\mathbb{X}}(\partial\Omega,\sigma)]^{M}$ via a Neumann series. Hence the function

$$u := \mathscr{S}_{\mathrm{mod}} \Big[\Big(-\frac{1}{2}I + K_{A^{\top}}^{\#} \Big)^{-1}f \Big] \quad \text{in } \Omega$$

is a solution of (HA_X -NBVP).

Well-posedness of the Neumann Problem

Main Theorem (M. Mitrea, P.T.)

Let $\Omega \subseteq \mathbb{R}^n$ be a AR-domain, and ν its GMT outward unit normal. Abbreviate $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$. Suppose \mathbb{X} is a GBFS on $(\partial \Omega, \sigma)$ such that $\mathcal{M}_{\partial\Omega}$ is bounded both on \mathbb{X} and \mathbb{X}' . Consider a weakly elliptic system L in \mathbb{R}^n as before, and assume that $A \in \mathfrak{A}_L^{\text{dis}}$ and $A^\top \in \mathfrak{A}_{I^{\top}}^{\text{dis}}$.

Then there exists some $\delta \in (0, 1)$ with the property that (HA_X-NBVP) is well posed whenever $\|\nu\|_{BMO(\partial\Omega,\sigma)} < \delta$. Specifically, the operator

$$-\frac{1}{2}I + K_{A^{\top}}^{\#}$$
 is invertible on $[HA_{X}(\partial\Omega,\sigma)]^{M}$

and the function

$$u(x) := \mathscr{S}_{\mathrm{mod}} \Big[\big(-\frac{1}{2}I + K_{\mathcal{A}^{\top}}^{\#} \big)^{-1}f \Big](x) \quad \forall x \in \Omega,$$

is a solution of (HA_X-NBVP), which is unique modulo constants, and satisfies $\|\mathcal{N}_{\kappa}(\nabla u)\|_{A_{X}(\partial\Omega,\sigma)} \approx \|f\|_{[HA_{X}(\partial\Omega,\sigma)]^{M}}$.

A GBFS Sampler

Working in the context of our main result, fix $p \in (1, \infty)$, and select a Muckenhoupt weight $w \in A_p(\partial\Omega, \sigma)$. Choose $\mathbb{X} := L^p(\partial\Omega, w)$. The Neumann Problem with boundary data in the $L^p(\partial\Omega, w)$ -based Beurling-Hardy space $\operatorname{HA}^p(\partial\Omega, w) := \operatorname{HA}_{L^p(\partial\Omega, w)}(\partial\Omega, \sigma)$ reads as

A GBFS Sampler

Working in the context of our main result, fix $p \in (1, \infty)$, and select a Muckenhoupt weight $w \in A_p(\partial\Omega, \sigma)$. Choose $\mathbb{X} := L^p(\partial\Omega, w)$. The Neumann Problem with boundary data in the $L^p(\partial\Omega, w)$ -based Beurling-Hardy space $\operatorname{HA}^p(\partial\Omega, w) := \operatorname{HA}_{L^p(\partial\Omega, w)}(\partial\Omega, \sigma)$ reads as

$$\begin{cases} u \in \left[\mathscr{C}^{\infty}(\Omega)\right]^{M}, \quad Lu = 0 \text{ in } \Omega, \\ \sum_{k=0}^{\infty} 2_{*}^{k(n-1)} \left(\int_{C_{k}} \left[\mathcal{N}_{\kappa}(\nabla u) \right]^{p} dw \right)^{1/p} < \infty, \\ \partial_{\nu}^{A} u = f \quad \text{at } \sigma\text{-a.e. point on } \partial\Omega, \\ \text{where} \quad \sum_{k=0}^{\infty} 2_{*}^{k(n-1)} \left(\int_{C_{k}} \left[f_{\gamma}^{\#} \right]^{p} dw \right)^{1/p} < \infty. \end{cases}$$

Big Picture

The theory of X-based Beurling-Hardy spaces gives a recipe for producing new Hardy spaces (of Beurling nature) in which the Neumann BVP is well posed.

Examples of δ -AR Domains

The "gently sloped" condition captured in the demand $\|\nu\|_{BMO(\partial\Omega,\sigma)} < \delta$ is illustrated by the following examples.

Figure: An upper-graph Lipschitz domain with small Lipschitz constant

Examples of δ -AR Domains

A non-Lipschitz domain for which our theory applies.

Figure: Example of a δ -AR domain which is not of upper-graph type.

Thank you for your attention!