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Motivation

The Neumann Problem on the Hardy Space H1

Let Ω ⊆ Rn be an open set (+ geometric conditions) with surface mea-
sure σ on ∂Ω, and outward unit normal ν. Fix an aperture parameter
κ ∈ (0,∞). Consider the Neumann Problem for the Laplacian with data
in the Hardy space H1(∂Ω, σ):

u ∈ C∞(Ω), ∆u = 0 in Ω,

Nκ(∇u) ∈ L1(∂Ω, σ),

∂νu := ν · (∇u)
∣∣κ−n.t.

∂Ω
= f ∈ H1(∂Ω, σ).

Here, Γκ(x) :=
{

y ∈ Ω : |y − x | < (1 + κ) dist(y , ∂Ω)
}

denotes the
nontangential approach region with vertex at x ∈ ∂Ω.

Given a Ln-measurable function u defined in Ω, and a point x ∈ ∂Ω, set

(Nκu)(x) := ∥u∥L∞(Γκ(x),Ln) and
(
u
∣∣κ−n.t.

∂Ω

)
(x) := lim

Γκ(x)∋y→x
u(y).
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Motivation

Historical Perspectives

Layer potential techniques have been proven to be an effective method
to tackle a variety of boundary problems. In this case specifically,

• [E. Fabes and C. Kenig, 1981] in C 1 domains.
⋄ Invertibility of −1

2 I + K#
∆ on H1(∂Ω, σ).

• [B. Dahlberg and C. Kenig, 1987] in Lipschitz domains.
⋄ Fatou-type result: H1(∂Ω, σ) is the correct space of boundary data.

• [D. Mitrea, I. Mitrea, and M. Mitrea, 2023] on δ-AR domains, and for
weakly elliptic systems L (more general than the Laplacian).
⋄ Geometrically sensitive estimates for SIOs of layer potential type
yielding invertibility of −1

2 I + K#
L on H1(∂Ω, σ).

⋄ Full force of Calderón-Zygmund theory of SIOs on UR sets required!

Note: δ-AR domains is the sharp version, from a GMT point of view, of
the class of Lipschitz domains with small Lipschitz constants (cf. [GHA]).
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Motivation

Other Related Works

Related works regarding the Neumann Problem on the Hardy space
Hp(∂Ω, σ) include:
• [R. Brown, 1995] in (starlike) Lipschitz domains, in dimension n ≥ 3.

⋄ For 1 − ε < p < 1 with ε ∈ (0,1) small.

• [N. Kalton and M. Mitrea, 1998] in Lipschitz domains, for the Lapla-
cian and the Lamé system.
⋄ For 1 − ε < p < 1 with ε ∈ (0,1) small.
⋄ Complex interpolation methods.

• [D. Mitrea, 2002] in Lipschitz domains, in dimension n = 2.
⋄ For 2

3 − ε < p ≤ 1 with ε ∈ (0, 1
6 ] small.
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Motivation

Recent Work

[M. Mitrea, P.T. 2024] Consider an AR domain Ω ⊆ Rn with GMT out-
ward unit normal ν. Let L := Ajk∂j∂k be an M ×M weakly elliptic system
in Rn, and assume A ∈ Adis

L and A⊤ ∈ Adis
L⊤ . Fix p ∈ (1,∞). Then there

exists δ ∈ (0,1) such that whenever ∥ν∥BMO(∂Ω,σ) < δ the Neumann
Problem with data prescribed in the Beurling-Hardy space is well posed:

(HAp-NBVP)


u ∈

[
C∞(Ω)

]M
, Lu = 0 in Ω,

Nκ(∇u) ∈ Ap(∂Ω, σ),

∂A
ν u = f ∈

[
HAp(∂Ω, σ)

]M
.

Fatou-type result: HAp is the “correct” space of boundary data in the
formulation of this Neumann Problem.
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Motivation

Lp-Based Beurling Algebras

Let Σ ⊆ Rn be an unbounded Ahlfors regular set, and σ := Hn−1⌊Σ.
Denote by ∆(x , r) the surface ball B(x , r) ∩Σ on Σ, for each x ∈ Σ and
r > 0. Fix a reference point x0 ∈ Σ, and 2∗ ≫ 1. Set C0 := ∆(x0,2∗)
and Ck := ∆(x0,2k+1

∗ )\∆(x0,2k
∗) for each k ∈ N. Fix p ∈ (1,∞).

For
each σ-measurable function f on Σ introduce

∥f∥Ap(Σ,σ) :=
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ) ∈ [0,∞].

The Beurling space Ap(Σ, σ) is defined as

Ap(Σ, σ) :=
{

f : Σ → R : f is σ-measurable and ∥f∥Ap(Σ,σ) <∞
}
.

Basic Fact: Ap(Σ, σ) ↪→ L1(Σ, σ)∩Lp(Σ, σ) continuously, for p ∈ (1,∞).

Note: The space Ap is quite different (in nature) from L1 and Lp.
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Motivation

Beurling-Hardy Spaces

Fix a background parameter γ ∈ (0,1). Following [MiTa24], for any
p ∈ (1,∞), introduce the Beurling-Hardy space by setting

HAp(Σ, σ) :=
{

f ∈ L1
loc(Σ, σ) : f#γ ∈ Ap(Σ, σ)

}
and equip this with ∥f∥HAp(Σ,σ) := ∥f#γ ∥Ap(Σ,σ) for each f ∈ HAp(Σ, σ).

As in [GHA], define the grand maximal function of any f ∈ L1
loc(Σ, σ) as

f#γ (x) := sup
ψ∈Bγ

x (Σ)

|⟨f , ψ⟩| ∀ x ∈ Σ,

with Bγx (Σ) ⊆ Ċ γ(Σ) being a collection of suitably normalized “bump”
functions centered at x ∈ Σ.

Fact: HAp(Σ, σ) ↪→ H1(Σ, σ) ∩ Lp(Σ, σ) continuously, for p ∈ (1,∞).

Note: HAp can be thought as a “Lp-flavored” H1.
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with Bγx (Σ) ⊆ Ċ γ(Σ) being a collection of suitably normalized “bump”
functions centered at x ∈ Σ.

Fact: HAp(Σ, σ) ↪→ H1(Σ, σ) ∩ Lp(Σ, σ) continuously, for p ∈ (1,∞).

Note: HAp can be thought as a “Lp-flavored” H1.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 8 / 36



Motivation

Beurling-Hardy Spaces

Fix a background parameter γ ∈ (0,1). Following [MiTa24], for any
p ∈ (1,∞), introduce the Beurling-Hardy space by setting

HAp(Σ, σ) :=
{

f ∈ L1
loc(Σ, σ) : f#γ ∈ Ap(Σ, σ)

}
and equip this with ∥f∥HAp(Σ,σ) := ∥f#γ ∥Ap(Σ,σ) for each f ∈ HAp(Σ, σ).
As in [GHA], define the grand maximal function of any f ∈ L1

loc(Σ, σ) as

f#γ (x) := sup
ψ∈Bγ

x (Σ)

|⟨f , ψ⟩| ∀ x ∈ Σ,
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Motivation

Atomic Characterization of HAp

In the same context as before, a σ-measurable function a : Σ → R is
called an x0-central Lp-atom provided there exists R ≥ 2∗ such that

Localization: suppa ⊆ ∆(x0,R),

Normalization: ∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1),

Vanishing Moment:
ˆ
Σ

a dσ = 0.

These atoms are the building blocks for HAp. In fact, given any
f ∈ L1(Σ, σ), one has

f ∈ HAp(Σ, σ) ⇐⇒ f =
∞∑

k=0

λkak in L1(Σ, σ)

for some sequence of x0-central Lp-atoms {ak}k∈N0 , and some se-
quence {λk}k∈N0 ∈ ℓ1(R). This characterization is quantitative!
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Motivation

Role of Lp

Recall that the Ap-norm of a σ-measurable function f on Σ is defined as

∥f∥Ap(Σ,σ) =
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ)

≈
∞∑

k=0

σ
(
∆(x0,2k

∗)
)

∥1∆(x0,2k
∗)
∥Lp(Σ,σ)

∥f · 1Ck∥Lp(Σ,σ),

while the normalization of a central Lp-atom a on Σ is

∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1) ≈
∥1∆(x0,R)∥Lp(Σ,σ)

σ
(
∆(x0,R)

) .

• What is the role of Lp in the context of Beurling-Hardy Spaces HAp ?
⋄ For one thing, Lp is good for doing Harmonic Analysis, 1 < p <∞.
⋄ The atomic theory for HAp is tied up with the manner in which the

space Ap is “normalized”.This suggests how one can transition from Lp

to a generic space X of σ-measurable functions on Σ.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 10 / 36



Motivation

Role of Lp

Recall that the Ap-norm of a σ-measurable function f on Σ is defined as

∥f∥Ap(Σ,σ) =
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ)

≈
∞∑

k=0

σ
(
∆(x0,2k

∗)
)

∥1∆(x0,2k
∗)
∥Lp(Σ,σ)

∥f · 1Ck∥Lp(Σ,σ),

while the normalization of a central Lp-atom a on Σ is

∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1) ≈
∥1∆(x0,R)∥Lp(Σ,σ)

σ
(
∆(x0,R)

) .

• What is the role of Lp in the context of Beurling-Hardy Spaces HAp ?
⋄ For one thing, Lp is good for doing Harmonic Analysis, 1 < p <∞.
⋄ The atomic theory for HAp is tied up with the manner in which the

space Ap is “normalized”.This suggests how one can transition from Lp

to a generic space X of σ-measurable functions on Σ.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 10 / 36



Motivation

Role of Lp

Recall that the Ap-norm of a σ-measurable function f on Σ is defined as

∥f∥Ap(Σ,σ) =
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ)

≈
∞∑

k=0

σ
(
∆(x0,2k

∗)
)

∥1∆(x0,2k
∗)
∥Lp(Σ,σ)

∥f · 1Ck∥Lp(Σ,σ),

while the normalization of a central Lp-atom a on Σ is

∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1)

≈
∥1∆(x0,R)∥Lp(Σ,σ)

σ
(
∆(x0,R)

) .

• What is the role of Lp in the context of Beurling-Hardy Spaces HAp ?
⋄ For one thing, Lp is good for doing Harmonic Analysis, 1 < p <∞.
⋄ The atomic theory for HAp is tied up with the manner in which the

space Ap is “normalized”.This suggests how one can transition from Lp

to a generic space X of σ-measurable functions on Σ.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 10 / 36



Motivation

Role of Lp

Recall that the Ap-norm of a σ-measurable function f on Σ is defined as

∥f∥Ap(Σ,σ) =
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ)

≈
∞∑

k=0

σ
(
∆(x0,2k

∗)
)

∥1∆(x0,2k
∗)
∥Lp(Σ,σ)

∥f · 1Ck∥Lp(Σ,σ),

while the normalization of a central Lp-atom a on Σ is

∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1) ≈
∥1∆(x0,R)∥Lp(Σ,σ)

σ
(
∆(x0,R)

) .

• What is the role of Lp in the context of Beurling-Hardy Spaces HAp ?
⋄ For one thing, Lp is good for doing Harmonic Analysis, 1 < p <∞.
⋄ The atomic theory for HAp is tied up with the manner in which the

space Ap is “normalized”.This suggests how one can transition from Lp

to a generic space X of σ-measurable functions on Σ.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 10 / 36



Motivation

Role of Lp

Recall that the Ap-norm of a σ-measurable function f on Σ is defined as

∥f∥Ap(Σ,σ) =
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ)

≈
∞∑

k=0

σ
(
∆(x0,2k

∗)
)

∥1∆(x0,2k
∗)
∥Lp(Σ,σ)

∥f · 1Ck∥Lp(Σ,σ),

while the normalization of a central Lp-atom a on Σ is

∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1) ≈
∥1∆(x0,R)∥Lp(Σ,σ)

σ
(
∆(x0,R)

) .

• What is the role of Lp in the context of Beurling-Hardy Spaces HAp ?

⋄ For one thing, Lp is good for doing Harmonic Analysis, 1 < p <∞.
⋄ The atomic theory for HAp is tied up with the manner in which the

space Ap is “normalized”.This suggests how one can transition from Lp

to a generic space X of σ-measurable functions on Σ.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 10 / 36



Motivation

Role of Lp

Recall that the Ap-norm of a σ-measurable function f on Σ is defined as

∥f∥Ap(Σ,σ) =
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ)

≈
∞∑

k=0

σ
(
∆(x0,2k

∗)
)

∥1∆(x0,2k
∗)
∥Lp(Σ,σ)

∥f · 1Ck∥Lp(Σ,σ),

while the normalization of a central Lp-atom a on Σ is

∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1) ≈
∥1∆(x0,R)∥Lp(Σ,σ)

σ
(
∆(x0,R)

) .

• What is the role of Lp in the context of Beurling-Hardy Spaces HAp ?
⋄ For one thing, Lp is good for doing Harmonic Analysis, 1 < p <∞.

⋄ The atomic theory for HAp is tied up with the manner in which the
space Ap is “normalized”.This suggests how one can transition from Lp

to a generic space X of σ-measurable functions on Σ.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 10 / 36



Motivation

Role of Lp

Recall that the Ap-norm of a σ-measurable function f on Σ is defined as

∥f∥Ap(Σ,σ) =
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ)

≈
∞∑

k=0

σ
(
∆(x0,2k

∗)
)

∥1∆(x0,2k
∗)
∥Lp(Σ,σ)

∥f · 1Ck∥Lp(Σ,σ),

while the normalization of a central Lp-atom a on Σ is

∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1) ≈
∥1∆(x0,R)∥Lp(Σ,σ)

σ
(
∆(x0,R)

) .

• What is the role of Lp in the context of Beurling-Hardy Spaces HAp ?
⋄ For one thing, Lp is good for doing Harmonic Analysis, 1 < p <∞.
⋄ The atomic theory for HAp is tied up with the manner in which the

space Ap is “normalized”.

This suggests how one can transition from Lp

to a generic space X of σ-measurable functions on Σ.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 10 / 36



Motivation

Role of Lp

Recall that the Ap-norm of a σ-measurable function f on Σ is defined as

∥f∥Ap(Σ,σ) =
∞∑

k=0

2k(n−1)(1−1/p)
∗ ∥f · 1Ck∥Lp(Σ,σ)

≈
∞∑

k=0

σ
(
∆(x0,2k

∗)
)

∥1∆(x0,2k
∗)
∥Lp(Σ,σ)

∥f · 1Ck∥Lp(Σ,σ),

while the normalization of a central Lp-atom a on Σ is

∥a∥Lp(Σ,σ) ≤ R(n−1)(1/p−1) ≈
∥1∆(x0,R)∥Lp(Σ,σ)

σ
(
∆(x0,R)

) .

• What is the role of Lp in the context of Beurling-Hardy Spaces HAp ?
⋄ For one thing, Lp is good for doing Harmonic Analysis, 1 < p <∞.
⋄ The atomic theory for HAp is tied up with the manner in which the

space Ap is “normalized”.This suggests how one can transition from Lp

to a generic space X of σ-measurable functions on Σ.
Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 10 / 36



Motivation

In an Abstract Setting
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Motivation

New Problem

Motivated by the HAp template, replacing Lp by a generic function space
X leads to functions spaces AX and HAX (to be made precise later).

Consider a weakly elliptic M ×M system L := Aαβjk ∂j∂k in Rn. Formulate
the following Neumann Problem with data prescribed in the X-based
Beurling-Hardy space:

(HAX-NBVP)


u ∈

[
C∞(Ω)

]M
, Lu = 0 in Ω,

Nκ(∇u) ∈ AX(∂Ω, σ),

∂A
ν u = f ∈

[
HAX(∂Ω, σ)

]M
.
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Motivation

Main Goals

• Introduce a new brand of Hardy spaces HAX associated with an X-
based Beurling space.

• Develop a Calderón-Zygmund theory for SIOs on HAX.

• Implement layer potential techniques to tackle the Neumann Problem
with boundary data in HAX.
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GBFS Preliminaries

Crash Course on GBFS

Fix a measure space (X,M, µ). Let (X, ∥ · ∥X) be a normed vector
space contained in M (X, µ), the set of all µ-measurable functions on X.
Following [GHA], call X a Generalized Banach Function Space (GBFS)
on (X, µ) if for all f ,g ∈ M (X, µ) one has:

(1) If |f | ≤ |g| p.w. µ-a.e. and g∈X, then f ∈X and ∥f∥X ≤ ∥g∥X.

(2) If {fj}j∈N ⊆ X is such that 0 ≤ fj ↗ |f | p.w. µ-a.e. as j → ∞ and
supj∈N ∥fj∥X <∞, then f ∈ X and ∥f∥X = supj∈N ∥fj∥X.

(3) There exists {Yj}j∈N ⊆ M with the property that X = ∪j∈NYj and
1Yj ∈ X for all j ∈ N.

The associated space (a.k.a. Köthe dual) of X is defined as

X′ :=
{

g ∈ M (X, µ) :

ˆ
X
|fg|dµ <∞ ∀ f ∈ X

}
,

equipped with the norm ∥g∥X′ := sup
{ˆ

X
|fg|dµ : ∥f∥X ≤ 1

}
.
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GBFS Preliminaries

Let Σ ⊆ Rn be an Ahlfors regular set, and σ := Hn−1⌊Σ. Some exam-
ples of GBFS include:

Example 1. For p ∈ (1,∞), the Lebesgue space Lp(Σ, σ) is a GBFS,
and its Köthe dual is Lp′

(Σ, σ), where p′ := p
p−1 ∈ (1,∞).

Example 2. Given p ∈ (1,∞), and w ∈ Ap(Σ, σ), the Muckenhoupt
weighted Lebesgue space Lp(Σ,w) is a GBFS, and its Köthe dual is
Lp′

(Σ,w ′), where w ′ := w1−p′ ∈ Ap′(Σ, σ).
Example 3. Let p(·) : Σ → (1,∞) be a σ-measurable function. Then the
variable exponent Lebesgue space Lp(·)(Σ, σ) is a GBFS, and Lp′(·)(Σ, σ)

is its Köthe dual, where p′(·) = p(·)
p(·)−1 .

Example 4. For p ∈ (1,∞) and q ∈ [1,∞], the Lorentz space Lp,q(Σ, σ)

is a GBFS, and Lp′,q′
(Σ, σ) is its Köthe dual.

Example 5. Fix p ∈ (1,∞), λ ∈ (0,n−1). The Morrey space Mp,λ(Σ, σ)

is a GBFS, and its Köthe dual is the Block space Bp′,λ(Σ, σ).
Other function spaces: Herz spaces, Orlicz spaces, Zygmund spaces,
Muckenhoupt weighted Morrey and Block spaces, ...
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A New Scale of Hardy Spaces HAX

GBFS-based Beurling Spaces

Fix an unbounded Ahlfors regular set Σ ⊆ Rn, and let σ := Hn−1⌊Σ.
Recall that the Hardy-Littlewood maximal operator MΣ on Σ acts on
each f ∈ M (Σ, σ) according to

(MΣf )(x) := sup
R>0

 
∆(x ,R)

|f |dσ for each x ∈ Σ.

Assume X is a GBFS on (Σ, σ) and suppose MΣ is bounded on X′.
With the family {Ck}k∈N0 as before, for each f ∈ M (Σ, σ) define

∥f∥AX(Σ,σ) :=
∞∑

k=0

σ
(
∆(x0,2k+1

∗ )
)

∥1∆(x0,2k+1
∗ )∥X

∥f · 1Ck∥X ∈ [0,∞].

Define the X-based Beurling space on Σ as

AX(Σ, σ) :=
{

f ∈ M (Σ, σ) : ∥f∥AX(Σ,σ) <∞
}
.

Basic Fact: AX(Σ, σ) ↪→ L1(Σ, σ) ∩X continuously.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 16 / 36



A New Scale of Hardy Spaces HAX

GBFS-based Beurling Spaces

Fix an unbounded Ahlfors regular set Σ ⊆ Rn, and let σ := Hn−1⌊Σ.
Recall that the Hardy-Littlewood maximal operator MΣ on Σ acts on
each f ∈ M (Σ, σ) according to

(MΣf )(x) := sup
R>0

 
∆(x ,R)

|f |dσ for each x ∈ Σ.

Assume X is a GBFS on (Σ, σ) and suppose MΣ is bounded on X′.
With the family {Ck}k∈N0 as before, for each f ∈ M (Σ, σ) define

∥f∥AX(Σ,σ) :=
∞∑

k=0

σ
(
∆(x0,2k+1

∗ )
)

∥1∆(x0,2k+1
∗ )∥X

∥f · 1Ck∥X ∈ [0,∞].

Define the X-based Beurling space on Σ as

AX(Σ, σ) :=
{

f ∈ M (Σ, σ) : ∥f∥AX(Σ,σ) <∞
}
.

Basic Fact: AX(Σ, σ) ↪→ L1(Σ, σ) ∩X continuously.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 16 / 36



A New Scale of Hardy Spaces HAX

GBFS-based Beurling Spaces

Fix an unbounded Ahlfors regular set Σ ⊆ Rn, and let σ := Hn−1⌊Σ.
Recall that the Hardy-Littlewood maximal operator MΣ on Σ acts on
each f ∈ M (Σ, σ) according to

(MΣf )(x) := sup
R>0

 
∆(x ,R)

|f |dσ for each x ∈ Σ.

Assume X is a GBFS on (Σ, σ) and suppose MΣ is bounded on X′.
With the family {Ck}k∈N0 as before, for each f ∈ M (Σ, σ) define

∥f∥AX(Σ,σ) :=
∞∑

k=0

σ
(
∆(x0,2k+1

∗ )
)

∥1∆(x0,2k+1
∗ )∥X

∥f · 1Ck∥X ∈ [0,∞].

Define the X-based Beurling space on Σ as

AX(Σ, σ) :=
{

f ∈ M (Σ, σ) : ∥f∥AX(Σ,σ) <∞
}
.

Basic Fact: AX(Σ, σ) ↪→ L1(Σ, σ) ∩X continuously.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 16 / 36



A New Scale of Hardy Spaces HAX

GBFS-based Beurling Spaces

Fix an unbounded Ahlfors regular set Σ ⊆ Rn, and let σ := Hn−1⌊Σ.
Recall that the Hardy-Littlewood maximal operator MΣ on Σ acts on
each f ∈ M (Σ, σ) according to

(MΣf )(x) := sup
R>0

 
∆(x ,R)

|f |dσ for each x ∈ Σ.

Assume X is a GBFS on (Σ, σ) and suppose MΣ is bounded on X′.
With the family {Ck}k∈N0 as before, for each f ∈ M (Σ, σ) define

∥f∥AX(Σ,σ) :=
∞∑

k=0

σ
(
∆(x0,2k+1

∗ )
)

∥1∆(x0,2k+1
∗ )∥X

∥f · 1Ck∥X ∈ [0,∞].

Define the X-based Beurling space on Σ as

AX(Σ, σ) :=
{

f ∈ M (Σ, σ) : ∥f∥AX(Σ,σ) <∞
}
.

Basic Fact: AX(Σ, σ) ↪→ L1(Σ, σ) ∩X continuously.

Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 16 / 36



A New Scale of Hardy Spaces HAX

GBFS-based Beurling Spaces

Fix an unbounded Ahlfors regular set Σ ⊆ Rn, and let σ := Hn−1⌊Σ.
Recall that the Hardy-Littlewood maximal operator MΣ on Σ acts on
each f ∈ M (Σ, σ) according to

(MΣf )(x) := sup
R>0

 
∆(x ,R)

|f |dσ for each x ∈ Σ.

Assume X is a GBFS on (Σ, σ) and suppose MΣ is bounded on X′.
With the family {Ck}k∈N0 as before, for each f ∈ M (Σ, σ) define

∥f∥AX(Σ,σ) :=
∞∑

k=0

σ
(
∆(x0,2k+1

∗ )
)

∥1∆(x0,2k+1
∗ )∥X

∥f · 1Ck∥X ∈ [0,∞].

Define the X-based Beurling space on Σ as

AX(Σ, σ) :=
{

f ∈ M (Σ, σ) : ∥f∥AX(Σ,σ) <∞
}
.

Basic Fact: AX(Σ, σ) ↪→ L1(Σ, σ) ∩X continuously.
Pedro Takemura (BU) New Brand of Hardy Spaces and the NBVP May 2025/Waco 16 / 36



A New Scale of Hardy Spaces HAX

The Hardy Space Associated with AX

LetX be a GBFS on (Σ, σ) and suppose MΣ is bounded onX′. Having
fixed γ ∈ (0,1), define the X-based Beurling-Hardy space on Σ as

HAX(Σ, σ) :=
{

f ∈ L1
loc(Σ, σ) : f#γ ∈ AX(Σ, σ)

}
,

and equip this space with the norm

∥f∥HAX(Σ,σ) := ∥f#γ ∥AX(Σ,σ) for each f ∈ HAX(Σ, σ).

Fact: Elements from HAX(Σ, σ) are actually L1 functions, and in fact
HAX(Σ, σ) ↪→ H1(Σ, σ) ∩X continuously.
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A New Scale of Hardy Spaces HAX

Atomic Theory on HAX

Call a σ-measurable function a : Σ → R an x0-central X-atom provided
there exists R ≥ 2∗ such that

suppa ⊆ ∆(x0,R), ∥a∥X ≤
∥1∆(x0,R)∥X
σ
(
∆(x0,R)

) , ˆ
Σ

a dσ = 0.

Proposition 1 (M. Mitrea, P.T.)

LetX be a GBFS on (Σ, σ) and suppose MΣ is bounded both onX and
X′. Then for any f ∈ L1(Σ, σ) it follows that, in a quantitative fashion,

f ∈ HAX(Σ, σ) ⇐⇒ f =
∞∑

k=0

λkak in L1(Σ, σ)

for some sequence of x0-central X-atoms {ak}k∈N0 , and some se-
quence {λk}k∈N0 ∈ ℓ1(R).
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A New Scale of Hardy Spaces HAX

Molecular Theory on HAX

Fix ε ∈ (0,∞). Call a σ-measurable function M : Σ → R an x0-central
(X, ε)-molecule if there exists R ≥ 2∗ such that for all k ∈ N0 one has

∥M · 1Ak (x0,R)∥X ≤ 2−k(n−1)ε
∗

∥1∆(x0,2k
∗R)∥X

σ
(
∆(x0,2k

∗R)
) and

ˆ
Σ

M dσ = 0,

where A0(x0,R) := ∆(x0,R) and Ak (x0,R) := ∆(x0,2k
∗R)\∆(x0,2k−1

∗ R)
for k ∈ N.

Proposition 2 (M. Mitrea, P.T.)

Let X be a GBFS on (Σ, σ) and suppose MΣ is bounded both on X
and X′. Fix ε ∈ (0,∞). Then there exists some constant C ∈ (0,∞)
such that for every x0-central (X, ε)-molecule M on Σ one has that

M belongs to HAX(Σ, σ) and ∥M∥HAX(Σ,σ) ≤ C.
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Calderón-Zygmund Theory on HAX

Nontangential Maximal Function Estimates

From now on, fix a UR-domain Ω ⊆ Rn with ∂Ω unbounded, and set
σ := Hn−1⌊∂Ω. Also, denote by ν the GMT outward unit normal to Ω.

Theorem 1 (M. Mitrea, P.T.)

Let X be a GBFS on (∂Ω, σ) and suppose M∂Ω is bounded both on X
and X′. Consider a kernel k ∈ C∞(Rn\{0}) that is odd and positive
homogeneous of degree 1− n. Introduce the boundary-to-domain con-
volution type SIO T acting on each function f ∈ L1(∂Ω, σ(x)

1+|x |n−1

)
as

T f (x) :=
ˆ
∂Ω

k(x − y)f (y)dσ(y) for each x ∈ Ω.

Then there exists C ∈ (0,∞) such that for all f ∈ HAX(∂Ω, σ) one has

∥Nκ(T f )∥AX(∂Ω,σ) ≤ C∥f∥HAX(∂Ω,σ).
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Calderón-Zygmund Theory on HAX

Boundedness of SIOs on HAX

Theorem 2 (M. Mitrea, P.T.)

Let X be a GBFS on (∂Ω, σ) and suppose M∂Ω is bounded both on X
and X′. Consider a kernel k ∈ C∞(Rn\{0}) that is even and positive
homogeneous of degree −n. Following [GHA], introduce the chord-dot-
normal SIO T# acting on each f ∈ L1(∂Ω, σ(x)

1+|x |n−1

)
according to

T#f (x) := lim
ε→0+

ˆ

y∈∂Ω
|x−y |>ε

⟨ν(x), y − x⟩k(x − y)f (y)dσ(y) at σ-a.e. x ∈ ∂Ω.

Then the operator T# : HAX(∂Ω, σ) → HAX(∂Ω, σ) is well defined and
bounded. Moreover, there exists some C ∈ (0,∞) such that

∥T#∥HAX(∂Ω,σ)→HAX(∂Ω,σ) ≤ C∥ν∥BMO(∂Ω,σ) ln
(
e/∥ν∥BMO(∂Ω,σ)

)
.
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Calderón-Zygmund Theory on HAX

• Remark: The estimate

∥T#∥HAX(∂Ω,σ)→HAX(∂Ω,σ) ≤ C∥ν∥BMO(∂Ω,σ) ln
(
e/∥ν∥BMO(∂Ω,σ)

)
is one of the key ingredients in the proof of solvability of our Neumann
Problem (HAX-NBVP), since we want to invert −1

2 I + K#
L on HAX.

• Comments about the proof:
⋄ The atomic and molecular theory of HAX plays a crucial role in

the proof of the above estimate. In fact, the main idea is to prove
that T# maps central X-atoms into central (X, ε)-molecules up to
a fixed multiple of ∥ν∥BMO(∂Ω,σ) ln

(
e/∥ν∥BMO(∂Ω,σ)

)
.

⋄ Characterization of BMO in terms of GBFS: If X is a GBFS on
(∂Ω, σ) and M∂Ω is bounded both on X and X′, then for every
f ∈ L1

loc(∂Ω, σ) one has

∥f∥BMOX(∂Ω,σ) := sup
∆⊆∂Ω

∥∥(f − ffl
∆ f dσ) · 1∆

∥∥
X

∥1∆∥X
≈ ∥f∥BMO(∂Ω,σ).
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Problem (HAX-NBVP), since we want to invert −1

2 I + K#
L on HAX.

• Comments about the proof:
⋄ The atomic and molecular theory of HAX plays a crucial role in

the proof of the above estimate. In fact, the main idea is to prove
that T# maps central X-atoms into central (X, ε)-molecules up to
a fixed multiple of ∥ν∥BMO(∂Ω,σ) ln

(
e/∥ν∥BMO(∂Ω,σ)

)
.

⋄ Characterization of BMO in terms of GBFS: If X is a GBFS on
(∂Ω, σ) and M∂Ω is bounded both on X and X′, then for every
f ∈ L1

loc(∂Ω, σ) one has

∥f∥BMOX(∂Ω,σ) := sup
∆⊆∂Ω

∥∥(f − ffl
∆ f dσ) · 1∆
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X
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Well-Posedness Result

Weakly Elliptic Systems

Let n ∈ N, with n ≥ 2, and M ∈ N. Fix a second-order, homogeneous,
constant complex coefficient, weakly elliptic M×M system of the format

L := Ajk∂j∂k in Rn

with each Ajk ∈ CM×M . The weak ellipticity of the system L means that
the characteristic matrix

L(ξ) := −ξjξkAjk is invertible for all ξ ∈ Rn\{0}.

Call A :=
(
Ajk

)
1≤j,k≤n a coefficient tensor for L, and write A ∈ AL.

For each κ ∈ (0,∞), define the conormal derivative of u : Ω → CM

associated with A ∈ AL as ∂A
ν u := νjAjk (∂ku)

∣∣κ−n.t.

∂Ω
.

Fundamental Fact (cf. [Mi18]): Any weakly elliptic system L admits a
“nicely behaved” matrix-valued fundamental solution EL.
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Well-Posedness Result

Distinguished Coefficient Tensors

For each coefficient tensor A ∈ AL and ξ ∈ Rn, introduce the directional
derivative operator along ξ associated with A as

∂A
ξ := ξjAjk∂k .

Call A a distinguished coefficient tensor for a weakly elliptic system L if

∂A⊤
ξ EL⊤(x) = 0 for all x , ξ ∈ Rn\{0} with x · ξ = 0.

Denote by Adis
L the family of all distinguished coefficient tensors for L.

The (transpose) double layer potential K#
A associated with A ∈ AL acts

on each g ∈
[
L1(∂Ω, σ(x)

1+|x |n−1

)]M , at σ-a.e. x ∈ ∂Ω, according to

K#
A g(x) := lim

ε→0+

ˆ

y∈∂Ω
|x−y |>ε

∂A⊤

ν(x)
[
EL⊤(x − y)

]
g(y)dσ(y).

A ∈ Adis
L if and only if K#

A is a SIO of chord-dot-normal type (cf. [GHA]).
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Well-Posedness Result

Back to the Neumann Problem

Let X be a GBFS on (∂Ω, σ) and suppose M∂Ω is bounded both on X
and X′. Fix a system L as before written for some choice of A ∈ AL.
Recall the formulation of the Neumann Problem with boundary data in
the X-based Beurling-Hardy space:

(HAX-NBVP)


u ∈

[
C∞(Ω)

]M
, Lu = 0 in Ω,

Nκ(∇u) ∈ AX(∂Ω, σ),

∂A
ν u = f ∈

[
HAX(∂Ω, σ)

]M
.

Question: Is HAX(∂Ω, σ) the correct space of boundary data in the
formulation of this problem?
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Well-Posedness Result

Fatou-type Result

Theorem 3 (M. Mitrea, P.T.)

Suppose X is a GBFS on (∂Ω, σ) such that M∂Ω is bounded both on X
and X′. Assume u is a vector-valued function in Ω satisfying

u ∈
[
C∞(Ω)

]M
, Lu = 0 in Ω

and Nκ(∇u) ∈ AX(∂Ω, σ).

Then (∇u)
∣∣κ−n.t.

∂Ω
exists at σ-a.e. point on ∂Ω, and for each A ∈ AL the

conormal derivative ∂A
ν u belongs to [HAX(∂Ω, σ)]M quantitatively, i.e.,

there exists C ∈ (0,∞), independent of u, such that

∥∂A
ν u∥[HAX(∂Ω,σ)]M ≤ C∥Nκ(∇u)∥AX(∂Ω,σ).

This ensures that the boundary condition in (HAX-NBVP) is meaning-
fully formulated.
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Well-Posedness Result

The Method of Layer Potentials

Consider the (modified) single layer potential whose action on each
function g ∈

[
L1(∂Ω, σ(x)

1+|x |n−1

)]M is given by

Smodg(x) :=
ˆ
∂Ω

{
EL(x − y)− EL(y)1Rn\B(0,1)(y)

}
g(y)dσ(y) ∀ x ∈ Ω.

Fix some function g ∈ [HAX(∂Ω, σ)]M (to be determined later). Setting
u := Smodg in Ω ensures

u ∈ [C∞(Ω)]M and Lu = 0 in Ω.

So, smoothness and PDE conditions in (HAX-NBVP) are OK!
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Well-Posedness Result

Moreover, such a choice of u satisfies

(∇u)(x) =
ˆ
∂Ω

(∇EL)(x − y)g(y)dσ(y) ∀ x ∈ Ω.

Since ∇EL is smooth in Rn\{0}, odd, and positive homogeneous of
degree 1 − n, we may invoke Theorem 1 to ensure that

∥Nκ(∇u)∥AX(∂Ω,σ) ≤ C∥g∥[HAX(∂Ω,σ)]M <∞.

Hence, Nκ(∇u) ∈ AX(∂Ω, σ). So, size condition in (HAX-NBVP) is OK!

Question: What does it take of g for the function u = Smodg to satisfy
the boundary condition ∂A

ν u = f ?
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Well-Posedness Result

Work done in [GHA] implies that for each g ∈
[
L1(∂Ω, σ(x)

1+|x |n−1

)]M one
has the jump-relation

∂A
ν (Smodg) =

(
− 1

2 I + K#
A⊤

)
g.

Thus, solving (HAX-NBVP) is then reduced to finding g ∈
[
HAX(∂Ω, σ)

]M

satisfying (
−1

2 I + K#
A⊤

)
g = f ∈

[
HAX(∂Ω, σ)

]M
.

• Basic Issue: Is −1
2 I + K#

A⊤ invertible on
[
HAX(∂Ω, σ)

]M ?
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Well-Posedness Result

If A⊤ is a distinguished coefficient tensor for L⊤ (i.e., A⊤ ∈ Adis
L⊤), then

K#
A⊤ is a SIO of chord-dot-normal type.

By our Theorem 2, we have that K#
A⊤ : [HAX(∂Ω, σ)]M → [HAX(∂Ω, σ)]M

boundedly and there exists C ∈ (0,∞) such that

∥K#
A⊤∥[HAX(∂Ω,σ)]M→[HAX(∂Ω,σ)]M ≤ C∥ν∥BMO(∂Ω,σ) ln

(
e/∥ν∥BMO(∂Ω,σ)

)
.

If ∥ν∥BMO(∂Ω,σ) is sufficiently small (“gently sloped” condition), then the
operator −1

2 I + K#
A⊤ is invertible on the Banach space [HAX(∂Ω, σ)]M

via a Neumann series. Hence the function

u := Smod

[(
− 1

2 I + K#
A⊤

)−1f
]

in Ω

is a solution of (HAX-NBVP).
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Well-Posedness Result

If A⊤ is a distinguished coefficient tensor for L⊤ (i.e., A⊤ ∈ Adis
L⊤), then

K#
A⊤ is a SIO of chord-dot-normal type.

By our Theorem 2, we have that K#
A⊤ : [HAX(∂Ω, σ)]M → [HAX(∂Ω, σ)]M

boundedly and there exists C ∈ (0,∞) such that

∥K#
A⊤∥[HAX(∂Ω,σ)]M→[HAX(∂Ω,σ)]M ≤ C∥ν∥BMO(∂Ω,σ) ln

(
e/∥ν∥BMO(∂Ω,σ)

)
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Well-Posedness Result

Well-posedness of the Neumann Problem

Main Theorem (M. Mitrea, P.T.)

Let Ω ⊆ Rn be a AR-domain, and ν its GMT outward unit normal. Ab-
breviate σ := Hn−1⌊∂Ω. Suppose X is a GBFS on (∂Ω, σ) such that
M∂Ω is bounded both on X and X′. Consider a weakly elliptic system
L in Rn as before, and assume that A ∈ Adis

L and A⊤ ∈ Adis
L⊤ .

Then there exists some δ ∈ (0,1) with the property that (HAX-NBVP) is
well posed whenever ∥ν∥BMO(∂Ω,σ) < δ. Specifically, the operator

−1
2 I + K#

A⊤ is invertible on [HAX(∂Ω, σ)]M

and the function

u(x) := Smod

[(
− 1

2 I + K#
A⊤

)−1f
]
(x) ∀ x ∈ Ω,

is a solution of (HAX-NBVP), which is unique modulo constants, and
satisfies ∥Nκ(∇u)∥AX(∂Ω,σ) ≈ ∥f∥[HAX(∂Ω,σ)]M .
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Well-Posedness Result

A GBFS Sampler

Working in the context of our main result, fix p ∈ (1,∞), and select
a Muckenhoupt weight w ∈ Ap(∂Ω, σ). Choose X := Lp(∂Ω,w). The
Neumann Problem with boundary data in the Lp(∂Ω,w)-based Beurling-
Hardy space HAp(∂Ω,w) := HALp(∂Ω,w)(∂Ω, σ) reads as



u ∈
[
C∞(Ω)

]M
, Lu = 0 in Ω,

∞∑
k=0

2k(n−1)
∗

( 
Ck

[
Nκ(∇u)

]p dw
)1/p

<∞,

∂A
ν u = f at σ-a.e. point on ∂Ω,

where
∞∑

k=0

2k(n−1)
∗

( 
Ck

[
f#γ

]p dw
)1/p

<∞.
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Well-Posedness Result

Big Picture

The theory of X-based Beurling-Hardy spaces gives a recipe for
producing new Hardy spaces (of Beurling nature) in which the

Neumann BVP is well posed.
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Well-Posedness Result

Examples of δ-AR Domains

The “gently sloped” condition captured in the demand
∥ν∥BMO(∂Ω,σ) < δ is illustrated by the following examples.

Figure: An upper-graph Lipschitz domain with small Lipschitz constant
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Well-Posedness Result

Examples of δ-AR Domains

A non-Lipschitz domain for which our theory applies.

Figure: Example of a δ-AR domain which is not of upper-graph type.
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Well-Posedness Result

Thank you for your attention!
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