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o Geometric Harmonic Analysis I: A Sharp Divergence Theorem
with Nontangential Pointwise Traces

o Geometric Harmonic Analysis II: Function Spaces Measuring
Size and Smoothness on Rough Sets

o Geometric Harmonic Analysis I11: Integral Representations,
Calderdn-Zygmund Theory, Fatou Theorems, and Applications
to Scattering

o Geometric Harmonic Analysis IV: Boundary Layer Potentials in
Uniformly Rectifiable Domains, and Applications to Complex
Analysis

o Geometric Harmonic Analysis V: Fredholm Theory and Finer
Estimates for Integral Operators, with Applications to Boundary
Problems
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LP-Dirichlet BVP, 1 < p < oo:

u e C®(RY)
: n Well-posed ~» 3! solution
Au=0 in R+ PONY u(a:’ t) — (PA*f)(l',) ($/ t) cR"”
NKU - Lp(Rn_l) ) t 9 B +
y K—n.t. B f c LP(RTL—].) ||NHuHLp(]Rn—1) g ”f“Lp(Rn_l)
'E)R’jr' -
NN / = / Rn—l
]Ri I'(z') ° u(z") th(lgl) lu|, =’ €
r—n.t.
/ o U 2 — li , ,7 .
° , ) U 85&?_ (z") (y/’;;fnﬁm/ u(y ,t)
(y/ t)eT k(=)
x! 8Ri =Rrn—1
I. Mitrea (Temple Univ.)

GHA Philosophy " May 19th 3/ 35



Identify structural active ingredients in making an elliptic boundary
value problem Fredholm solvable/well-posed.

The Geometric Harmonic Analysis philosophy amounts to:

PAE GEoOM s-nmy FUNCTION, A &tggoura

Generalized Banach Function
Spaces - Harmonic Analysis
friendly

L J

v

Well-posedness or at least
Fredholm Solvability of the
Boundary Value Problem

Weakly Elliptic Systems with Lack of sudden turns
Distinguished Coefficient
Tensors

(1) PDE: A ~» more general second/higher order systems with DCT

(2) Geometry: R ~» domains without sudden big turns

(3) Functional Analysis/Harmonic Analysis: LP(92) ~» Generalized
Banach Function Spaces
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Fix n, M € N, with n > 2 and consider a homogeneous M x M
second-order complex constant coefficient system in R"

L = A;50,05 with A,, € CM*M
which is weakly elliptic, i.e., its M x M symbol matrix
L(f) = —&EsArs is non-singular V¢ = (§T)1ST’S7’L eR" \ {0}

Examples:
e Scalar operators: L = A,30,05 with A, € C (e.g., A),

o Genuine systems: L = pA + (A + p)Vdiv with g, A € C
(Lamé-like).
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Given a weakly elliptic system L in R" - very special functions:

e a fundamental solution E € [C®(R™\ {01 for L. Always
exists.

e a Poisson kernel for L in R”}. Doesn’t always exist.
@ a Green function for L in R’. With z, € R" fixed:
o G(,,) € [Liy (R)IM*M
-] LG(‘, Z’O) = _5zOIM><M
° G("xo)’aR" =0
+ d ,
) 1 pn-1 €z
o N.G(,z,) €L (R e |x’|"—1)
Doesn’t always exist.
Example: A — 2Vdiv - no Poisson kernel or Green function.
Goal: Add a new concept to this list - distinguished coefficient
tensors.
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With each family A € [(CMXM]HXH associate the system L 4:

A= (Ars) ~s Lg = Aps0,04

1<r,s<n

Given L weakly elliptic system, consider its collection of coefficient
tensors

A, :={A:Ls=L}.

Note that if the family B = (Bys)
then Ly = Layp. Thus

1<r.s<n 1S antisymmetric in 7, s

#2A, is infinite.
Example: L:=Ain Q CR% Thenn =2 and M =1 and

%={(_1a (f) aeC}
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Let L be a homogeneous, second-order, constant complex coefficient,
weakly elliptic M x M system in R™ and let E;+ be the fundamental
solution of L. Then the following are equivalent:

(a) there exists A € A, such that 8?TELT (x) =0 for each £ € R"
and each v € R™ \ {0} with £ L = = 0.

(b) there exists a unique k, : R™\ {0} — CM>*M of class € such
that for all z € R\ {0} and all s € {1,...,n}:

/ ke dA™ Y = Inpear and L(zskrp(z)) = 0.
Siv=

Here, if £ = (& )1<r<n and B = (Bys)1<rs<n then 853 = & B,50s.

AN .= {A €2y s.t. (a) holds.}
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o AL is a convex set (so if #ALS > 2 then #ALS = o)

Let L, L' be homogeneous, 2nd-order, complex constant coefficient
weakly elliptic systems in R™. Say that L ~ L’ if L’ is obtained from
L by means of finitely many operations of the following type:

o L ~ CL where C € CM*M ig invertible.

o L ~» LC where C € CM*M i5 invertible.

@ L~ LoW :i=A,s(WV),(WV)s where W € R™™ is invertible.
Then if L ~ L' it follows that

A £ o = A £ &,

Indeed if C € CM*M and W € R™ ™ are invertible:
0 Ae A = AC €A%, and A € AP = CA e Ads.
0o AU = WloAoW e A, .
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Not every weakly elliptic system posses a DCT. Indeed:

For each n € N with n > 2, the n x n system L := A — 2Vdiv in R™
1s weakly elliptic, second-order, homogeneous, constant real

coefficient, symmetric, and has the property that ATS = Ql%‘? =

The scalar case: L = divAV weakly elliptic. Then:

o if n > 3 then A = {sym A} where sym A := (A+ A")/2
o if n = 2 then:

A (8)

dls dis
g <— A" ={symA} <— —
s = {ayma) s L)

£0
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The case of systems:

o the complex Lamé-like system in the weak ellipticity regime:
Ly :=pA+ (p+ A)Vdiv with ¢ #0 and 2p 4+ X #0,

There holds: Ql%ijA # D = 3u+A#0.

o generic weakly elliptic systems: if Ql%is # & and Qldls =% & then
AP = {A} and A5 = {AT} for some A € Ay (hence both 24
and Qld].ﬁ are smgletons).

o Legendre-Hadamard elliptic systems: either QLCL“S = & and
A = &, or AP = {A} and A = {AT} for some A € Ap.
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Let L be an M x M homogeneous constant complex coefficient
second-order weakly elliptic system in R™ such that Ql%is #+ @. Fix

A € A%S and bring in ky, : R™\ {0} — CM*M | gssociated with A as
in the previous result. Then Pl :R"™ 1 — CM*M (defined by

PE(x') := 2k (x’,1) is a Poisson kernel for L inRY, i.e. it satisfies:

(a) 3C € (0,00) such that |P*(x") - for each ¥’ € R~ 1.

| = 1+ /|2
(b) P is measurable and Pl dy' = Ingwr
Rn—1
(c) If KE(2',t) := PE(z') = t*"PL(a'/t) for each ' € R*! and
t >0, then K satisfies
LKL — OMXM ln [DI(RQL—)]MXM
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Conjectures (second order case):
o for each L weakly elliptic #Ql%is <1
o for each L Legendre Hadamard elliptic #Qldis =1
o A £ & if and only if Qldls # @ (ok if n = 2)
° QI.dLiS # @ if and only if L the satisfies Shapiro-Lopatinskii

condition
o if ||L1)— Lo|| < e, then AP # & if and only if ATS # & (ok if
n=2

o A% £ & if and only if Fatou holds
Conjectures (higher order case):
A4S, # @ (ok if m =1,2,3,4)
° Qldls om £ DI AN+3u#0 (okif m=1)

Lamé
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Fix m € N and consider the operator of order 2m in R™:

L= Z 8“Aa58ﬂ ~» E fundamental solution
la]=|8]=m
Then the coefficient tensor {Aa5}|a|:| Bl=m 18 called distinguished if
for all A,y € Njj with |A| =|y| =m —1 and all £,z € R"\ {0} s.t.
¢ L x there holds:

ol A 8| [nlt |01t Jwlt
ol AT o7 7l 0 !
vy n

lal=I8l=m 6+t e;=a
O+w+ep="y
|5|=|9|
O+n=X

86+w+5+ekE)( ) — é’k(8§+w+6+8jE)($) Aﬂa

9> Y A SGEOPE) @) Asa ¢ ory =0

lal=IBl=m 6-+¢;=a
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Here #"! is the (n — 1)-dimensional Hausdorff measure in R".

Call a non-empty open set 2 C R™ an Ahlfors regular domain if:
(1) 99 is an Ahlfors regular set, i.e., there exists C > 1 such that

CT'R" ' <" 1 (B(z,R)N9Q) < CR"!

for each x € 99 and each R € (0, diam 092),
(2) #7100\ 0,Q) = 0, where 8, is the GMT boundary of €,

L™(B(x,r)NN)

T-’I’L

>0

082 := {ac € 02 : limsup

r—0+

and limsup £4(Blz,r) \ ) > 0}.

n
r—0* r

I. Mitrea (Temple Univ.) R T ey iotE 15735



Following Hofmann, M. Mitrea & Taylor, call  a UR domain if:
o 2 is an Ahlfors regular domain
e 0N is an uniformly rectifiable (UR) set (G. David & S. Semmes)

That is, 3 ¢, M € (0, 00) such that for each x € 9Q and

0 < R < diam ) one can find a Lipschitz map ¢ : By, — R" (where
B, is a ball of radius R in R™~1) with Lipschitz constant < M, and
such that

A" (B(z, R)N 02N o(BR)) > eR" .

Call Q C R" a domain without sudden big turns if 2 is an AR
domain and

o when 02 bounded: € is d-infinitesimally flat for § small, i.e.
dist(v, VMO(99)) < 6 < 1,
e when 00 unbounded: ||v|smo small.
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If Q C R™ is an AR domain, then 2 is UR follows from:
e the proximity of v to VMO(92) when 92 bounded,
e the smallness of ||v||pmo when 02 unbounded.

In fact, €2 becomes two-sided NTA in the sense of Jerison & Kenig

and there are even topological implications. Indeed if ||v|pmo < 1
then:

e 01 is unbounded and both € and R™ \ Q are connected.

Flatness in the unbounded boundary case is typically associated with
the ability to contain said set in a narrow strip - this is not the case
for our work, which is more inclusive:

o the domain can have arbitrarily high peaks
o the domain can have arbitrarily deep valleys
o what is needed is a sufficiently gentle slope
o can develop gently rotating spiral points
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Nestor M. Riviere - Proceedings of Symposia in Pure Mathematics,
Volume XXXV, Part 1 - AMS, Providence, Rhode Island, 1979: in
connection with the following boundary value problems:

Q C R” bounded €' domain.

A%y =0 in Q,u‘aﬂ,g—g given

. 2, .
A2 =0 in Q2 2% given

Y v 2
. 2, 93 .
A%y =0 in Q, %, ‘377; given
call for: Prescribe classes of boundary data which give existence and

UNIQUENESS.
An invitation to consider a more general Functional Analytical
framework than LP.
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Let (4, ) be a sigma-finite measure space:
o 91 the sigma-algebra of all y-measurable subsets of 2"
o M (X, ) the vector space of all real-valued p-measurable, finite
u-a.e. functions on 2
o X linear subspace of .# (2", ) and || - [x norm on X.

(X, ] - |Ix) is called a GBFS on (27, u) provided:

(1) [Lattice Property] If f € X and g € # (2, p) satisty |g| < |f| at
p-a.e. point in 2" then g € X and ||g|lx < || f]|x.

(2) [Fatou Property] If {f;}jen C X and f € A4 (X", ) are such
that 0 < f; ~ f pointwise p-a.e. on 2 as j — oo and
supjen || fjllx < oo then f € X and || fllx = supjen [l f;lx-

(3) [Richness Property] 3 {Xj}jen C 9 such that J;on Xj = 2
and 1x; € X for every j € N.
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o for each f € X one has |f| € X and |||f| HX = fllx

e pointwise multiplication by b € L>(Z, u) is a bounded
mapping from X into itself, with operator norm < |[b]|poc(2- )

e any X GBFS on (£, i) is a Banach space.

Given X GBFS on (2, i), define the Kothe dual X’ of X as

X = {gG///(%”,u): / |fg|dp < oo for each feX},
G
equipped with the norm
llgllxs := sup {f% |fgldp: f €X and ||f|x <1}, for each g € X'.

By design, the following generalized Holder inequality holds:

/%Ifgldué I£lxlgllx: for each feX, geX.
T e e Ty TR e



o the Kothe dual (X', - [|x/) of a GBFS X on (27, u) is itself a
GBFS on (2, u).

Y CR" UR set and o := " 1|X. Assume X GBFS on (%,0) s.t.

My : X=X and My : X — X' are bounded.

Let k be sufficiently smooth on R™ \ {0}, odd and positive

homogeneous of degree 1 — n. Define the operators acting on each

function f € L'(Z, 1+(|7£9|2—1)

T.f(x) := / k(x —y)f(y)do(y) for each e >0 and each x € 3,

yeY
lz—y|>e
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Twaxf(z) :=sup |T.f(z)| for each x € &,
s>0

Tf(x):= lim T.f(z) foro-a.e x€X.

e—0t

Then the operators Tmax, T induce well-defined bounded mappings
Toa, T : X =X and  Tpax, T : X' = X
Moral: in a Functional Analytic environment which is Harmonic

Analysis friendly, the attempt to implement a singular integral
approach for solving elliptic BVP’s has a chance of success.
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e Lebesgue Spaces with p € (1, 00)

Muckenhoupt Weighted Lebesgue Spaces with p € (1, 00)
Variable Exponent Lebesgue Spaces (for suitable exponents)
Lorentz Spaces

Morrey Spaces and Block Spaces

Muckenhoupt Weighted Morrey and Block Spaces

Standard, Geometric and Composite Herz Spaces

e 6 o o

Orlicz Spaces
e Zygmund Spaces
o Spaces LPexp(log? L) with p € (1, 00)

o Rearrangement Invariant Banach Function Spaces
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e () C R" open set

e let L be a homogeneous, second-order, constant complex
coefficient, weakly elliptic M x M system in R"

e fix X, a harmonic analysis friendly GBFS on (09,0), and £ > 0
In this context consider the BVP:

ue [

I Lu=0 in
(Dx) Nou e X
ulpg =FeX

Goal: study well-posedness for (Dx), i.e.: 3, |, estimates, regularity,
integral representation formulas
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Set g := "1 |0 and consider A € Ay, s.t. L = L4 and F the
fundamental solution of L. For f € [L* (99, ; J;'J’;Z_l )]M define the
bdry-to-domain double layer potential at each point z € Q as

Daf(x) = — / ve(y) (OB) (& — ) Aur () dor(y)

[2/9)
and the bdry-to-bdry double layer at o-a.e. point = € 9 by
Kaf@)i==lm [ 0.0) 00E) (o~ 5)Auf ) doly)
e—0t

yeIN
|lz—y|>e
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As a result of the Calderén-Zygmund theory developed in GBES if €2
is a UR domain in R™:

o L(Daf)=0in Q

e 3C €(0,00) s.t. [Nu(Daf)lx <C|flx for all feX

o for every f € X one has
(DAf)‘;;‘ = (31 +Ka)f o-ae in 0Q,

where [ is the identity operator.

In conclusion:

e for solving (Dx), it is relevant to invert/study the spectrum of
the operator %I + K4 on X

This is an issue affected by the choice of coefficient tensor A.
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Example: L := A in a domain Q C R%. Two choices of coefficient
tensors in A are

1 0 1 4
= (00 e (1),

Then, for o-a.e. z € 9:

K@) =5 tm VWY =T) ) do(y),

2 —y?

i.e., the classical harmonic boundary-to-boundary double layer.
Under the natural identification R? = C, for o-a.e. z € O§:

1 £(©)
Kaf(z) = 55 lim, / %
yeoN
lz—y[>e

i.e., the boundary-to-boundary Cauchy integral operator.
GHA Philosophy



Specialize matters to the case when Q := R% and X = LP(99) for
some p € (1,00). In this case Q = R and ¢ = £! and:

o Kuy=0and 31+ Ky, = 31 is trivially invertible on LP(0).
o For Ll-ae. x €R

Kuf@ =50 im [ I,

271 e—0+
y€R
|lx—y|>e

i.e., Ka, = §H, where H is the classical Hilbert transform on R.

However H? = —1 on LP(99) implies (KA1)2 =477, and thus
(3714 Ka,)(— 31+ Ka,) =0 on LP(89),

precluding 37 + K, from being invertible on LP(9<2).
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Moral: The choice of the coefficient tensor strongly influences the
functional analytic properties of the bdry-to-bdry potential.

Coefficient tensors A € Ql%is yield double layer potentials K 4 which
are decisively “better” in terms of recognizing flatness.

Let L be a homogeneous, second-order, constant complex coefficient,
weakly elliptic M x M system in R™, and suppose A € ;. TFAE:

(i) The coefficient tensor A belongs to A%S.
(ii) If Q is a half-space in R™, then the double layer K4 = 0.
(iii) 3k € [€=(R™\ {0})]MXM even, positive homogeneous of degree
—n, and such that for any Lebesgue measurable set 2 C R"™ of
locally finite perimeter, the integral kernel of K has the form

w(y),x —yk(x —y) for each x € I and A" '-a.e. y € 3,9,

where v is the GMT outward unit normal to ().
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A SIO operator T is said to have a chord-dot-normal structure if

Tf(zx):=p.v. /aQ<V(y) s —y)k(x —y)f(y)do(y) for o-a.e. x € L,

with k € [C®(R" \ {0})]™*M even, positive homog. of degree —n.
Thus

Ace QldLiS = K4 has chord-dot-normal structure.

This is a crucial step as the chord-dot-normal structure is critical (if
and only if) in ensuring that the SIO is sensitive to the flatness of
the domain.
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Let T be a chord-dot-normal SIO associated with Q@ C R™, a domain
without sudden big turns, and X a harmonic analysis friendly GBFS.

Then T':
o is close to compact on X if 0N is bounded;

@ has small norm on X if 9Q unbounded.

Conclusion: Both cases lead to either Fredholmness with index
zero or invertibility of the operator %I + K4 on X,
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Bounded on Lebesgue,
Sobolev, Hardy, Holder,
BMO, Besov, and

Triebel-Lizorkin spaces

Calderén-Zygmund 's of formal convolution type
by 1o multiplicati

Y

bounded on Generalized

Lebesgue Double Layers

GBFS farwmome Jote a/ hesuc/
aunal,

<V, Eog)>
wlare T 1s ::/:'H{f(uu

Layers
Fhee

Chord-Dot-Normal SIOs

Arise naturally in connection
to PDEs and BVPs

Finer norm estimates:
sensitivity to flatness

Genuine Double Layers associated with
systems p i
tensors: most favorable class of boundary
layer potentials for implementing
Fredholm Theory
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In a GMT setting:

o BVPs and SIOs on Riemannian Manifolds

o Connections with Several Complex Variables

o BVPs and SIOs for Higher Order Systems

o Scattering Theory and GMT

Complex Analytic Methods for Elliptic PDEs in the Plane
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