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Geometric Harmonic Analysis

Geometric Harmonic Analysis I: A Sharp Divergence Theorem
with Nontangential Pointwise Traces

Geometric Harmonic Analysis II: Function Spaces Measuring
Size and Smoothness on Rough Sets

Geometric Harmonic Analysis III: Integral Representations,
Calderón-Zygmund Theory, Fatou Theorems, and Applications
to Scattering

Geometric Harmonic Analysis IV: Boundary Layer Potentials in
Uniformly Rectifiable Domains, and Applications to Complex
Analysis

Geometric Harmonic Analysis V: Fredholm Theory and Finer
Estimates for Integral Operators, with Applications to Boundary
Problems
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Background and Motivation: The Case of the Upper-Half Space

Lp-Dirichlet BVP, 1 < p <∞:

u ∈ C∞(Rn+)

∆u = 0 in Rn+
Nκu ∈ Lp(Rn−1)

u
∣∣κ−n.t.

∂Rn+
= f ∈ Lp(Rn−1)

 

Well-posed  ∃ ! solution

u(x′, t) = (P∆
t ∗f)(x′), (x′, t) ∈ Rn+

‖Nκu‖Lp(Rn−1) . ‖f‖Lp(Rn−1)

Rn+

∂Rn+ ≡ Rn−1x′

Γ(x′)

• (y′, t)

• Nκu(x′) = sup
Γκ(x′)

|u|, x′ ∈ Rn−1

• u
∣∣∣κ−n.t.

∂Rn
+

(x′) = lim
(y′,t)→x′

(y′,t)∈Γκ(x′)

u(y
′
, t)
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GHA Philosophy

Identify structural active ingredients in making an elliptic boundary
value problem Fredholm solvable/well-posed.

The Geometric Harmonic Analysis philosophy amounts to:

(1) PDE: ∆ more general second/higher order systems with DCT
(2) Geometry: Rn+  domains without sudden big turns
(3) Functional Analysis/Harmonic Analysis: Lp(∂Ω)  Generalized

Banach Function Spaces
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(1) PDE - Weakly Elliptic Systems

Fix n,M ∈ N, with n ≥ 2 and consider a homogeneous M ×M
second-order complex constant coefficient system in Rn

L = Ars∂r∂s with Ars ∈ CM×M

which is weakly elliptic, i.e., its M ×M symbol matrix

L(ξ) := −ξrξsArs is non-singular ∀ ξ = (ξr)1≤r≤n ∈ Rn \ {0}.

Examples:

Scalar operators: L = Ars∂r∂s with Ars ∈ C (e.g., ∆),

Genuine systems: L = µ∆ + (λ+ µ)∇div with µ, λ ∈ C
(Lamé-like).
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Special objects for weakly elliptic systems

Given a weakly elliptic system L in Rn - very special functions:

a fundamental solution E ∈ [C∞(Rn \ {0})]M×M for L. Always
exists.

a Poisson kernel for L in Rn+. Doesn’t always exist.

a Green function for L in Rn+. With xo ∈ Rn fixed:

G(·, xo) ∈ [L1
loc(Rn+)]M×M

LG(·, xo) = −δxoIM×M
G(·, xo)

∣∣κ−n.t.

∂Rn+
= 0

NκG(·, xo) ∈ L1

(
Rn−1,

dx′

1 + |x′|n−1

)
Doesn’t always exist.

Example: ∆− 2∇div - no Poisson kernel or Green function.
Goal: Add a new concept to this list - distinguished coefficient
tensors.
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Coefficient Tensors

With each family A ∈
[
CM×M

]n×n
associate the system LA:

A =
(
Ars
)

1≤r,s≤n  LA := Ars∂r∂s

Given L weakly elliptic system, consider its collection of coefficient
tensors

AL := {A : LA = L}.

Note that if the family B =
(
Brs
)

1≤r,s≤n is antisymmetric in r, s
then LA = LA+B. Thus

#AL is infinite.

Example: L := ∆ in Ω ⊆ R2. Then n = 2 and M = 1 and

A∆ =

{(
1 α
−α 1

)
; α ∈ C

}
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Distinguished Coefficient Tensors

Theorem (MMM - GHA Series)

Let L be a homogeneous, second-order, constant complex coefficient,
weakly elliptic M ×M system in Rn and let EL> be the fundamental
solution of L>. Then the following are equivalent:

(a) there exists A ∈ AL such that ∂A
>

ξ EL>(x) = 0 for each ξ ∈ Rn
and each x ∈ Rn \ {0} with ξ ⊥ x = 0.

(b) there exists a unique kL : Rn \ {0} −→ CM×M of class C∞ such
that for all x ∈ Rn \ {0} and all s ∈ {1, . . . , n}:∫

Sn−1

kL dH
n−1 = IM×M and L(xskL(x)) = 0.

Here, if ξ = (ξr)1≤r≤n and B = (Brs)1≤r,s≤n then ∂Bξ := ξrBrs∂s.

Adis
L := {A ∈ AL s.t. (a) holds.}
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Basic Properties of Distinguished Coefficient Tensors

Adis
L is a convex set (so if #Adis

L ≥ 2 then #Adis
L =∞)

Let L,L′ be homogeneous, 2nd-order, complex constant coefficient
weakly elliptic systems in Rn. Say that L ∼ L′ if L′ is obtained from
L by means of finitely many operations of the following type:

L CL where C ∈ CM×M is invertible.

L LC where C ∈ CM×M is invertible.

L L ◦W := Ars(W∇)r(W∇)s where W ∈ Rn×n is invertible.

Then if L ∼ L′ it follows that

Adis
L 6= ∅ ⇐⇒ Adis

L′ 6= ∅.

Indeed if C ∈ CM×M and W ∈ Rn×n are invertible:

A ∈ Adis
L ⇐⇒ AC ∈ Adis

LC and A ∈ Adis
L ⇐⇒ CA ∈ Adis

CL.

A ∈ Adis
L ⇐⇒ W> ◦A ◦W ∈ Adis

L◦W .

I. Mitrea (Temple Univ.) GHA Philosophy May 19th 9 / 35



Distinguished Coefficient Tensors

Not every weakly elliptic system posses a DCT. Indeed:

Theorem (MMM - GHA Series)

For each n ∈ N with n ≥ 2, the n× n system L := ∆− 2∇div in Rn
is weakly elliptic, second-order, homogeneous, constant real
coefficient, symmetric, and has the property that Adis

L = Adis
L>

= ∅.

The scalar case: L = divA∇ weakly elliptic. Then:

if n ≥ 3 then Adis
L =

{
symA

}
where symA := (A+A>)/2

if n = 2 then:

Adis
L 6= ∅ ⇐⇒ Adis

L =
{

symA
}
⇐⇒

∫
S1

dH 1(ξ)

L(ξ)
6= 0
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Distinguished Coefficient Tensors

The case of systems:

the complex Lamé-like system in the weak ellipticity regime:

Lµ,λ := µ∆ + (µ+ λ)∇div with µ 6= 0 and 2µ+ λ 6= 0,

There holds: Adis
Lµ,λ
6= ∅ ⇐⇒ 3µ+ λ 6= 0.

generic weakly elliptic systems: if Adis
L 6= ∅ and Adis

L>
6= ∅ then

Adis
L = {A} and Adis

L>
= {A>} for some A ∈ AL (hence both Adis

L

and Adis
L>

are singletons).

Legendre-Hadamard elliptic systems: either Adis
L = ∅ and

Adis
L>

= ∅, or Adis
L = {A} and Adis

L>
= {A>} for some A ∈ AL.
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Distinguished Coefficients lead to Poisson Kernels

Theorem (MMM - GHA Series)

Let L be an M ×M homogeneous constant complex coefficient
second-order weakly elliptic system in Rn such that Adis

L 6= ∅. Fix
A ∈ Adis

L and bring in kL : Rn \ {0} → CM×M , associated with A as
in the previous result. Then PL : Rn−1 −→ CM×M defined by
PL(x ′) := 2kL(x ′, 1) is a Poisson kernel for L in Rn+, i.e. it satisfies:

(a) ∃C ∈ (0,∞) such that |PL(x′)| ≤ C

(1+|x′|2)
n
2

for each x′ ∈ Rn−1.

(b) PL is measurable and

∫
Rn−1

PL(y′) dy′ = IM×M .

(c) If KL(x′, t) := PLt (x′) = t1−nPL(x′/t) for each x′ ∈ Rn−1 and
t > 0, then KL satisfies

LKL = 0M×M in
[
D′(Rn+)

]M×M
.
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Distinguished Coefficient Tensors

Conjectures (second order case):

for each L weakly elliptic #Adis
L ≤ 1

for each L Legendre Hadamard elliptic #Adis
L = 1

Adis
L 6= ∅ if and only if Adis

L>
6= ∅ (ok if n = 2)

Adis
L 6= ∅ if and only if L the satisfies Shapiro-Lopatinskǐı

condition

if ‖L1 − L2‖ ≤ ε, then Adis
L1
6= ∅ if and only if Adis

L2
6= ∅ (ok if

n = 2)

Adis
L 6= ∅ if and only if Fatou holds

Conjectures (higher order case):

Adis
∆m 6= ∅ (ok if m = 1, 2, 3, 4)

Adis
Lamém 6= ∅ if λ+ 3µ 6= 0 (ok if m = 1)
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Distinguished Coefficients - Higher Order Case

Fix m ∈ N and consider the operator of order 2m in Rn:

L :=
∑

|α|=|β|=m

∂αAαβ∂
β  E fundamental solution

Then the coefficient tensor {Aαβ}|α|=|β|=m is called distinguished if
for all λ, γ ∈ Nn0 with |λ| = |γ| = m− 1 and all ξ, x ∈ Rn \ {0} s.t.
ξ ⊥ x there holds:∑
|α|=|β|=m

∑
δ+η+ej=α
θ+ω+ek=γ
|δ|=|θ|
θ+η=λ

α!
|α|!

γ!
|γ|!
|δ|!
δ!
|η|!
η!
|θ|!
θ!
|ω|!
ω! ×

×
[
ξj(∂

δ+ω+β+ekE)(x)− ξk(∂δ+ω+β+ejE)(x)
]
Aβα

+

 ∑
|α|=|β|=m

∑
δ+ej=α

α!
|α|!
|δ|!
δ! ξj(∂

δ+βE)(x)Aβα

 δλγ = 0
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(2) Geometry - Ahlfors Regular Domains

Here H n−1 is the (n− 1)-dimensional Hausdorff measure in Rn.

Definition

Call a non-empty open set Ω ⊆ Rn an Ahlfors regular domain if:

(1) ∂Ω is an Ahlfors regular set, i.e., there exists C ≥ 1 such that

C−1Rn−1 ≤H n−1
(
B(x,R) ∩ ∂Ω

)
≤ C Rn−1

for each x ∈ ∂Ω and each R ∈ (0,diam ∂Ω),

(2) H n−1(∂Ω \ ∂∗Ω) = 0, where ∂∗Ω is the GMT boundary of Ω,

∂∗Ω :=
{
x ∈ ∂Ω : lim sup

r→0+

Ln(B(x, r) ∩ Ω)

rn
> 0

and lim sup
r→0+

Ln(B(x, r) \ Ω)

rn
> 0
}
.
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Classes of Domains

Following Hofmann, M. Mitrea & Taylor, call Ω a UR domain if:

Ω is an Ahlfors regular domain

∂Ω is an uniformly rectifiable (UR) set (G. David & S. Semmes)

That is, ∃ ε, M ∈ (0,∞) such that for each x ∈ ∂Ω and
0 < R < diam Ω one can find a Lipschitz map ϕ : B′R → Rn (where
B′R is a ball of radius R in Rn−1) with Lipschitz constant ≤M , and
such that

H n−1
(
B(x,R) ∩ ∂Ω ∩ ϕ(B′R)

)
≥ εRn−1.

Call Ω ⊂ Rn a domain without sudden big turns if Ω is an AR
domain and

when ∂Ω bounded: Ω is δ-infinitesimally flat for δ small, i.e.
dist(ν,VMO(∂Ω)) < δ � 1,

when ∂Ω unbounded: ‖ν‖BMO small.
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Flatness - Domains Without Sudden Big Turns

If Ω ⊂ Rn is an AR domain, then Ω is UR follows from:

the proximity of ν to VMO(∂Ω) when ∂Ω bounded,

the smallness of ‖ν‖BMO when ∂Ω unbounded.

In fact, Ω becomes two-sided NTA in the sense of Jerison & Kenig
and there are even topological implications. Indeed if ‖ν‖BMO � 1
then:

∂Ω is unbounded and both Ω and Rn \ Ω are connected.

Flatness in the unbounded boundary case is typically associated with
the ability to contain said set in a narrow strip - this is not the case
for our work, which is more inclusive:

the domain can have arbitrarily high peaks

the domain can have arbitrarily deep valleys

what is needed is a sufficiently gentle slope

can develop gently rotating spiral points

I. Mitrea (Temple Univ.) GHA Philosophy May 19th 17 / 35



Flatness - Domains Without Sudden Big Turns
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Flatness - Domains Without Sudden Big Turns
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(3) Functional Analysis - Generalized Banach Function Spaces

Nestor M. Rivière - Proceedings of Symposia in Pure Mathematics,
Volume XXXV, Part 1 - AMS, Providence, Rhode Island, 1979: in
connection with the following boundary value problems:
Ω ⊆ Rn bounded C 1 domain.

∆2u = 0 in Ω, u
∣∣
∂Ω
, ∂u∂ν given

∆2u = 0 in Ω, ∂u∂ν ,
∂2u
∂ν2 given

∆2u = 0 in Ω, ∂
2u
∂ν2 ,

∂3u
∂ν3 given

call for: Prescribe classes of boundary data which give existence and
uniqueness.
An invitation to consider a more general Functional Analytical
framework than Lp.
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Generalized Banach Function Spaces

Let (X , µ) be a sigma-finite measure space:

M the sigma-algebra of all µ-measurable subsets of X
M (X , µ) the vector space of all real-valued µ-measurable, finite
µ-a.e. functions on X
X linear subspace of M (X , µ) and ‖ · ‖X norm on X.

Definition

(X, ‖ · ‖X) is called a GBFS on (X , µ) provided:

(1) [Lattice Property] If f ∈ X and g ∈M (X , µ) satisfy |g| ≤ |f | at
µ-a.e. point in X then g ∈ X and ‖g‖X ≤ ‖f‖X.

(2) [Fatou Property] If {fj}j∈N ⊆ X and f ∈M (X , µ) are such
that 0 ≤ fj ↗ f pointwise µ-a.e. on X as j →∞ and
supj∈N ‖fj‖X <∞ then f ∈ X and ‖f‖X = supj∈N ‖fj‖X.

(3) [Richness Property] ∃ {Xj}j∈N ⊆M such that
⋃
j∈NXj = X

and 1Xj ∈ X for every j ∈ N.
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Generalized Banach Function Spaces

for each f ∈ X one has |f | ∈ X and
∥∥ |f | ∥∥X = ‖f‖X

pointwise multiplication by b ∈ L∞(X , µ) is a bounded
mapping from X into itself, with operator norm ≤ ‖b‖L∞(X ,µ)

any X GBFS on (X , µ) is a Banach space.

Definition

Given X GBFS on (X , µ), define the Köthe dual X′ of X as

X′ :=
{
g ∈M (X , µ) :

∫
X
|fg| dµ <∞ for each f ∈ X

}
,

equipped with the norm
‖g‖X′ := sup

{∫
X |fg| dµ : f ∈ X and ‖f‖X ≤ 1

}
, for each g ∈ X′.

By design, the following generalized Hölder inequality holds:∫
X
|fg|dµ ≤ ‖f‖X‖g‖X′ for each f ∈ X, g ∈ X′.
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Generalized Banach Function Spaces and Singular Integrals

the Köthe dual (X′, ‖ · ‖X′) of a GBFS X on (X , µ) is itself a
GBFS on (X , µ).

Theorem (MMM - GHA Series)

Σ ⊆ Rn UR set and σ := H n−1bΣ. Assume X GBFS on (Σ, σ) s.t.

MΣ : X→ X and MΣ : X′ → X′ are bounded.

Let k be sufficiently smooth on Rn \ {0}, odd and positive
homogeneous of degree 1− n. Define the operators acting on each
function f ∈ L1

(
Σ, σ(x)

1+|x|n−1

)
Tεf(x) :=

∫
y∈Σ
|x−y|>ε

k(x− y)f(y) dσ(y) for each ε > 0 and each x ∈ Σ,
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Generalized Banach Function Spaces and Singular Integrals

Theorem (Continued)

Tmaxf(x) := sup
ε>0
|Tεf(x)| for each x ∈ Σ,

T f(x) := lim
ε→0+

Tεf(x) for σ-a.e. x ∈ Σ.

Then the operators Tmax, T induce well-defined bounded mappings

Tmax, T : X→ X and Tmax, T : X′ → X′.

Moral: in a Functional Analytic environment which is Harmonic
Analysis friendly, the attempt to implement a singular integral
approach for solving elliptic BVP’s has a chance of success.
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Examples of Harmonic Analysis Friendly GBFS

Lebesgue Spaces with p ∈ (1,∞)

Muckenhoupt Weighted Lebesgue Spaces with p ∈ (1,∞)

Variable Exponent Lebesgue Spaces (for suitable exponents)

Lorentz Spaces

Morrey Spaces and Block Spaces

Muckenhoupt Weighted Morrey and Block Spaces

Standard, Geometric and Composite Herz Spaces

Orlicz Spaces

Zygmund Spaces

Spaces Lpexp(logθ L) with p ∈ (1,∞)

Rearrangement Invariant Banach Function Spaces
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(4) How it all comes together - The Dirichlet Problem

• Ω ⊆ Rn open set
• let L be a homogeneous, second-order, constant complex
coefficient, weakly elliptic M ×M system in Rn
• fix X, a harmonic analysis friendly GBFS on (∂Ω, σ), and κ > 0
In this context consider the BVP:

(DX)


u ∈

[
C∞(Ω)

]M
Lu = 0 in Ω

Nκu ∈ X

u
∣∣κ−n.t.

∂Ω
= f ∈ X

Goal: study well-posedness for (DX), i.e.: ∃, !, estimates, regularity,
integral representation formulas
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Layer potentials

Set σ := H n−1b∂Ω and consider A ∈ AL s.t. L = LA and E the

fundamental solution of L. For f ∈
[
L1
(
∂Ω , σ(x)

1+|x|n−1

)]M
define the

bdry-to-domain double layer potential at each point x ∈ Ω as

DAf(x) := −
∫
∂Ω
νs(y) (∂rE) (x− y)Asrf(y) dσ(y)

and the bdry-to-bdry double layer at σ-a.e. point x ∈ ∂Ω by

KAf(x) := − lim
ε→0+

∫
y∈∂Ω
|x−y|>ε

νs(y) (∂rE) (x− y)Asrf(y) dσ(y)

I. Mitrea (Temple Univ.) GHA Philosophy May 19th 27 / 35



Properties of the double layer potentials

As a result of the Calderón-Zygmund theory developed in GBFS if Ω
is a UR domain in Rn:

L(DAf) = 0 in Ω

∃ C ∈ (0,∞) s.t. ‖Nκ

(
DAf

)
‖X ≤ C‖f‖X for all f ∈ X

for every f ∈ X one has

(DAf)
∣∣κ−n.t.

∂Ω
=
(

1
2I +KA

)
f σ-a.e. in ∂Ω,

where I is the identity operator.

In conclusion:

for solving (DX), it is relevant to invert/study the spectrum of
the operator 1

2I +KA on X

This is an issue affected by the choice of coefficient tensor A.
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The case of the Laplacian in 2D

Example: L := ∆ in a domain Ω ⊆ R2. Two choices of coefficient
tensors in A∆ are

A0 :=

(
1 0
0 1

)
, A1 :=

(
1 i
−i 1

)
.

Then, for σ-a.e. x ∈ ∂Ω:

KA0f(x) =
1

2π
lim
ε→0+

∫
y∈∂Ω
|x−y|>ε

〈ν(y), y − x〉
|x− y|2

f(y) dσ(y),

i.e., the classical harmonic boundary-to-boundary double layer.
Under the natural identification R2 ≡ C, for σ-a.e. z ∈ ∂Ω:

KA1f(z) =
1

2πi
lim
ε→0+

∫
y∈∂Ω
|x−y|>ε

f(ζ)

ζ − z
dζ,

i.e., the boundary-to-boundary Cauchy integral operator.
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The case of the Laplacian in 2D

Specialize matters to the case when Ω := R2
+ and X = Lp(∂Ω) for

some p ∈ (1,∞). In this case ∂Ω = R and σ = L1 and:

KA0 ≡ 0 and 1
2I +KA0 = 1

2I is trivially invertible on Lp(∂Ω).

For L1-a.e. x ∈ R

KA1f(x) =
1

2πi
lim
ε→0+

∫
y∈R
|x−y|>ε

f(y)

y − x
dy,

i.e., KA1 = i
2H, where H is the classical Hilbert transform on R.

However H2 = −I on Lp(∂Ω) implies
(
KA1

)2
= 4−1I, and thus(

1
2I +KA1

)(
− 1

2I +KA1

)
= 0 on Lp(∂Ω),

precluding 1
2I +KA1 from being invertible on Lp(∂Ω).
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Moral: The choice of the coefficient tensor strongly influences the
functional analytic properties of the bdry-to-bdry potential.

Coefficient tensors A ∈ Adis
L yield double layer potentials KA which

are decisively “better” in terms of recognizing flatness.

Theorem (MMM - GHA Series)

Let L be a homogeneous, second-order, constant complex coefficient,
weakly elliptic M ×M system in Rn, and suppose A ∈ AL. TFAE:

(i) The coefficient tensor A belongs to Adis
L .

(ii) If Ω is a half-space in Rn, then the double layer KA ≡ 0.

(iii) ∃ k ∈
[
C ∞(Rn \ {0})

]M×M
even, positive homogeneous of degree

−n, and such that for any Lebesgue measurable set Ω ⊆ Rn of
locally finite perimeter, the integral kernel of KA has the form

〈ν(y), x− y〉k(x− y) for each x ∈ ∂Ω and H n−1-a.e. y ∈ ∂∗Ω,

where ν is the GMT outward unit normal to Ω.
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Chord-Dot-Normal SIOs

Definition (GHA Series)

A SIO operator T is said to have a chord-dot-normal structure if

Tf(x) := p.v.

∫
∂Ω
〈ν(y) , x− y〉 k(x− y)f(y)dσ(y) for σ-a.e. x ∈ ∂Ω,

with k ∈ [C∞(Rn \ {0})]M×M even, positive homog. of degree −n.

Thus

A ∈ Adis
L =⇒ KA has chord-dot-normal structure.

This is a crucial step as the chord-dot-normal structure is critical (if
and only if) in ensuring that the SIO is sensitive to the flatness of
the domain.
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Chord-Dot-Normal SIOs

Theorem (MMM - GHA Series)

Let T be a chord-dot-normal SIO associated with Ω ⊂ Rn, a domain
without sudden big turns, and X a harmonic analysis friendly GBFS.
Then T :

is close to compact on X if ∂Ω is bounded;

has small norm on X if ∂Ω unbounded.

Conclusion: Both cases lead to either Fredholmness with index
zero or invertibility of the operator 1

2I +KA on X.
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Emerging Directions from Geometric Harmonic Analysis

In a GMT setting:

BVPs and SIOs on Riemannian Manifolds

Connections with Several Complex Variables

BVPs and SIOs for Higher Order Systems

Scattering Theory and GMT

Complex Analytic Methods for Elliptic PDEs in the Plane
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