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Abstract

In the 1950’s, A. Bitsadze discovered that the classical Dirichlet

boundary value problem for the square of the Cauchy-Riemann oper-

ator is not well posed in the unit disk. This unexpected phenomenon

led I. Gelfand to attempt an explanation based on the nature of the

roots of the associated characteristic equation. In this presentation,

however, we indicate that the actual reason lies in an entirely different

direction, and we characterize all such pathological scalar operators

in the plane, as well as all pathological 2 × 2 systems in the plane,

based on powerful structural results. Moreover, we establish an equiv-

alence between the pathological behavior of scalar operators and that

of systems. This is joint work with Dorina Mitrea and Marius Mitrea.

Bitsadze’s Operator

It has been known that the Lp-Dirichlet BVP for real scalar op-

erators is well posed, e.g., the laplacian ∆ := 4∂̄∂, where ∂̄ is the

Cauchy-Riemann operator. The situation is dramatically different for

scalar complex operators.

Bitsadze’s operator ∂̄2 yields an Lp-Dirichlet BVP which has in-

finitely many linearly independent null-solutions in R2
+. For example,

uk(z) :=
Im z

(z + i)k
for each z ∈ R2

+ and k ∈ N with k ≥ 2, (1)

is such a family of null-solutions. Indeed, uk = 0 on ∂R2
+ ≡ R and

∂̄2uk(z) = 0 for each z ∈ R2
+ and k ∈ N with k ≥ 2. (2)

So, uniqueness for the Lp-Dirichlet BVP for ∂̄2 in R2
+ fails dramati-

cally. This fact seemed at that time unexpected and almost unbeliev-

able, and it became a subject of discussions for many mathematicians

trying to explain this phenomenon.

Ellipticity

Fix n, M ∈ N with n ≥ 2. Consider a second-order, homogeneous,

constant complex coefficient, M ×M system in Rn

L = Ajk∂j∂k with each Ajk ∈ CM×M . (3)

Define the symbol of L as

L(ξ) := −ξjξkAjk ∈ CM×M , ∀ξ = (ξj)1≤j≤n ∈ Rn.

We say that L is weakly elliptic if L(ξ) ∈ CM×M is invertible

for each ξ ∈ Rn\{0}, and call L Legendre-Hadamard elliptic if

ReL(ξ) ∈ RM×M is strictly positive definite for each ξ ∈ Rn\{0}.

Remark 1. Legendre-Hadamard ellipticity implies weak ellipticity.

Poisson Kernels

Let L be a second-order, homogeneous, constant complex coeffi-

cient, weakly elliptic, M ×M system in Rn. A Poisson kernel for

L in Rn
+ is a matrix-valued function P : Rn−1 → CM×M satisfying:

(a) There exists a constant C ∈ (0,∞) such that

|P (x)| ≤ C

(1 + |x|2)n/2
for each x ∈ Rn−1. (4)

(b) The function P is Lebesgue measurable and�
Rn−1

P (x) dx = IM×M . (5)

(c) If for each x ∈ Rn−1 and t > 0 one sets

K(x, t) := Pt(x) = t1−nP (x/t) (6)

then the matrix-valued function K : Rn
+ → CM×M satisfies

LK = 0 · IM×M in [D′(Rn
+)]

M×M . (7)

Remark 2. By elliptic regularity, any Poisson kernel is C∞-smooth.

Theorem 3 (Agmon-Douglis-Nirenberg; 1950’s). Every Legendre-

Hadamard elliptic system has a Poisson kernel.

Equivalence of Systems

Let L = Ajk∂j∂k, with each Ajk ∈ CM×M , be an M ×M system

in Rn. We define the following three types of transformations:

(i) L 7→ PL = (PAjk)∂j∂k for any P ∈ CM×M nonsingular.

(ii) L 7→ LQ = (AjkQ)∂j∂k for any Q ∈ CM×M nonsingular.

(iii) L 7→ L◦W := Ajk(W∇)j(W∇)k for anyW ∈ Rn×n nonsingular.

Two systems L1 and L2 are said to be equivalent if one can be

transformed into the other by means of finitely many successive appli-

cations of transformations (i)-(iii). In such a case, write L1 ∼ L2.

Remark 4. L1 ∼ L2 iff there exist P,Q ∈ CM×M and W ∈ Rn×n

all nonsingular such that L1 = P (L2 ◦W )Q.

Remark 5. If L1 and L2 are scalar operators, then L1 ∼ L2 iff there

exist α ∈ C\{0} and W ∈ Rn×n nonsingular with L1 = α(L2 ◦W ).

Remark 6.Weak ellipticity is preserved under equivalence.

Theorem 7 (Structure Theorem for Scalar Operators). For any

second-order, homogeneous, constant complex coefficient, weakly

elliptic, scalar operator L in R2, there is a unique β ∈ [−1, 1]\{0}
such that

L ∼ Sβ := ∂2x + i(β − 1)∂x∂y + β∂2y. (8)

Moreover, all equivalence classes are distinct, and Sβ has a Pois-

son kernel iff β > 0.

Theorem 8 (Structure Theorem for Real 2× 2 Systems). Let L be

a second-order, homogeneous, constant real coefficient, weakly el-

liptic 2× 2 system in R2. Then L may be equivalently reduced to

one of the following two canonical types:

(i)Type 1: For some k ∈ (0, 1] and ρ ∈ [−k, k]\{0, k2} one has

L ∼ Lk,ρ :=

(
1 0

0 ρ
k2

)
∂2x +

(
0 ρ−k2

k
ρ−1
k 0

)
∂x∂y +

(
ρ 0

0 1

)
∂2y. (9)

(ii)Type 2: For some b ∈ {0, 1} and τ ∈ (0, 1], one has

L ∼ Lb,τ :=

(
1 0

0 1

)
∂2x + 2

(
0 0

b 0

)
∂x∂y +

(
1 0

0 τ

)
∂2y. (10)

Moreover, there is no overlap between type 1 and type 2 and all

equivalence classes are distinct within both type 1 and type 2.

Finally, Lk,ρ has a Poisson kernel iff ρ ̸= −k, while Lb,τ has a

Poisson kernel for all b, τ in the specified sets above.

Recall the matrix representations of any complex number z = x+iy:

z♭ :=

(
x
y

)
and z♯ :=

(
x −y
y x

)
. (11)

For any second-order, homogeneous, complex scalar operator in Rn

L = ajk∂j∂k with each ajk ∈ C, (12)

define the second-order, homogeneous, real 2× 2 system in Rn

L♯ := a
♯
jk∂j∂k. (13)

Remark 9. If L1 and L2 are two complex scalar operators, then

L1 ∼ L2 if and only L
♯
1 ∼ L

♯
2 (this is surprisingly delicate).

The Lp-Dirichlet Problem

Fix an integrability exponent p ∈ (1,∞). Let L be a second-order,

homogeneous, constant complex coefficient, M × M system in Rn.

The Lp-Dirichlet Boundary Value Problem for L in Rn
+ is for-

mulated for a fixed aperture parameter κ ∈ (0,∞) as

u ∈ [C∞(Rn
+)]

M ,

Lu = 0 in Rn
+,

Nκu ∈ Lp(Rn−1),

u
∣∣κ−n.t.

∂Rn
+
= f ∈ [Lp(Rn−1)]M .

(14)

The space of admissible boundary data for the Lp-Dirichlet

boundary value problem for the operator L in the upper-half space is

AD p
L :=

{
f ∈ [Lp(Rn−1)]M : the Lp Dirichlet BVP for L

in Rn
+ with boundary datum f has a solution

}
.

(15)

The space of null-solutions for the Lp-Dirichlet boundary

value problem for L in Rn
+ is defined as

NS p
L :=

{
u ∈ [C∞(Rn

+)]
M : u solves the Lp Dirichlet BVP

for L in Rn
+ with boundary datum 0

}
.

(16)

Theorem 10 (All-or-Nothing Theorem for Scalar Operators).Let L

be a second-order, homogeneous, constant complex coefficient,

weakly elliptic, scalar operator in R2. Then AD p
L is closed and

either AD p
L = Lp(R) and NS p

L = {0},

or AD p
L =

{
f ∈ Lp(R) : Hf = ±if

}
and dimNS p

L = ∞,

where H is the Hilbert transform on the real line.

Theorem 11 (All-or-Nothing Theorem for Real 2× 2 Systems).Let

L be a second-order, homogeneous, constant real coefficient,

weakly elliptic, 2× 2 system in R2. Then AD p
L is closed and

either AD p
L = [Lp(R)]2 and NS p

L = {0},

or AD p
L =

{
f ∈ [Lp(R)]2 : Hf = ±if

}
and dimNS p

L = ∞,

where H := −iHi♯ =

(
0 iH

−iH 0

)
is the matrix Hilbert transform.

Theorem 12.Let L be second-order, homogeneous, constant com-

plex coefficient, scalar operator in R2. Then one has

AD p
L =

{
g + ih : (g, h) ∈ AD p

L♯ with g and h real-valued
}

and AD p
L♯ =

{
g♭ + ih♭ : g, h ∈ AD p

L

}
.

Theorem 13.Let L be second-order, homogeneous, constant com-

plex coefficient, scalar operator in Rn. Then one has

NS p
L =

{
g + ih : (g, h) ∈ NS p

L♯ with g and h real-valued
}

and NS p
L♯ =

{
g♭ + ih♭ : g, h ∈ NS p

L

}
.

Theorem 14. Let L be a second-order, homogeneous, constant

complex coefficient, weakly elliptic, scalar operator in R2. Then

the following statements hold:

(i)The Lp-Dirichlet BVP for L in R2
+ is well posed if and only if

the Lp-Dirichlet BVP for L♯ in R2
+ is well posed.

(ii) L has a Poisson kernel iff L♯ has a Poisson kernel (in R2
+).

(iii) For each η ∈ [0, 1), one has L ̸∼ ∂̄2 + η∂2 iff L♯ ̸∼ (∂̄2 + η∂2)♯.

(iv)

�
S1

1

L(ξ)
dH1(ξ) ̸= 0 iff det

[�
S1
[L♯(ξ)]−1 dH1(ξ)

]
̸= 0.

Theorem 15 (Main Theorem for Scalar Operators). Let L be a

second-order, homogeneous, constant complex coefficient, weakly

elliptic, scalar operator in R2. Then the following are equivalent:

(i) For some (or any) p ∈ (1,∞), the Lp-Dirichlet boundary value

problem for L in R2
+ is well posed.

(ii) L has a Poisson kernel in R2
+.

(iii) L ̸∼ ∂̄2 + η∂2 for any η ∈ [0, 1).

(iv)

�
S1

1

L(ξ)
dH1(ξ) ̸= 0.

Theorem 16 (Main Theorem for Real 2× 2 Systems). Let L be a

second-order, homogeneous, constant real coefficient, 2× 2 system

in R2. Then the following conditions are equivalent:

(i’) For some (or any) p ∈ (1,∞), the Lp-Dirichlet boundary value

problem for L in R2
+ is well posed.

(ii’) L has a Poisson kernel in R2
+.

(iii’) L ̸∼ (∂̄2 + η∂2)♯ for any η ∈ [0, 1).

(iv’) det

[�
S1
[L(ξ)]−1 dH1(ξ)

]
̸= 0.

Remark 17.Collectively, Theorems 15-16 answer Gelfand’s question.

Remark 18. As a corollary of Theorems 15-16, in the class of com-

plex scalar operators and real 2 × 2 systems in R2, the property of

possessing a Poisson kernel is preserved under equivalence.

Remark 19.Theorems 15-16 also imply that, in the class of complex

scalar operators and real 2 × 2 systems in R2, the well-posedness of

the Lp-Dirichlet problem is stable under small perturbations of L.

Remark 20. Similar results to Theorems 15-16 also hold for the Ho-

mogeneous and Inhomogeneous Regularity Problems in R2
+.

Example: The Lamé System

Example 21.Recall the Lamé system of elasticity in R2,

Lλ,µ = µ∆ · I2×2 + (λ + µ)∇ div, λ, µ ∈ R. (17)

Then Lλ,µ is weakly elliptic iff µ ̸= 0 and λ+ 2µ ̸= 0. Staying in this

regime, define t := µ
λ+2µ ∈ R\{0}. Then:


Lλ,µ ∼ L1,−1 (type 1 without Poisson kernel) if t = −1

Lλ,µ ∼ L0,1 (type 2 with Poisson kernel) if t = 1

Lλ,µ ∼ L1,1/t (type 1 with Poisson kernel) if |t| > 1

Lλ,µ ∼ L1,t (type 1 with Poisson kernel) if |t| < 1.

(18)

Therefore,

λ + 3µ ̸= 0 ⇐⇒ Lλ,µ has a Poisson kernel in R2
+

⇐⇒ for some (or any) p ∈ (1,∞),

the Lp-Dirichlet BVP for Lλ,µ in R2
+ is well posed.

This is also seen from Theorem 16 and the fact that�
S1
[Lλ,µ(ξ)]

−1dH1(ξ) =
π(λ + 3µ)

µ(λ + 2µ)
· I2×2. (19)
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