Please do not write in these boxes.

1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL

MTH 1321

Name:_____ Instructor:

Spring 2019 Departmental Final Exam

NO	CALCUI			VFD
INU	CALCUI	JAIUR	ALLUV	VED

Complete the following in the space provided. Show the steps or reasoning leading to your answer for full credit.

1. Let
$$f(x) = \begin{cases} \sqrt{x}, & 0 \le x \le 4, \\ mx, & x > 4, \end{cases}$$
 where *m* is a constant.

(a) Is there any value of m which makes f continuous at x = 4? If so, find it. If not, explain why not.

(b) Find
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$
.

2. Let $f(x) = x^3$. Use the limit definition of the derivative to show that $f'(x) = 3x^2$.

3. Let
$$f(x) = \frac{3x^2 + 8}{(2x+1)^2}$$
.

(a) Find all horizontal asymptotes for the graph of y = f(x). Justify your answer using an appropriate limit.

(b) Find the slope of the line tangent to y = f(x) at x = 0.

- 4. A particle moves along the x-axis with velocity v(t) = 6(t-1)². When t = 1, the particle is at position x = 2.
 (a) Find the acceleration of the particle when t = 3.
 - (b) Find the position of the particle when t = 3.

5. Compute the following:

(a) Let
$$f(x) = 2019 + \tan^{-1}(x) - \sqrt{x}$$
. Find $f'(x)$.

(b) Let $g(x) = e^{-x} \cos(2x)$. Find $\frac{dg}{dx}$. You do not need to simplify your answer.

6. Compute the following:

(a) Let $f(t) = [\ln(\sin t)]^2$. Find f'(t). You do not need to simplify your answer.

(b) If (x+2y)y = 2x - y, find $\frac{dy}{dx}$ when x = 3 and y = 1.

7. Compute the following:

(a)
$$\int (2019 + \sec x \tan x - e^x) dx$$

(b)
$$\int_0^1 (\sqrt[3]{x} - x) \, dx$$

8. Compute the following:

(a)
$$\int_{-3}^{2} \frac{2x}{x^2 + 5} dx$$

(b)
$$\int \frac{x^2 + 5}{2x} \, dx$$

9. You begin to heat a pot of water on the stove. At time t (in minutes), the temperature T (in °F) of the water is recorded below. For $0 \le t \le 8$, T is a differentiable function of t.

$t \pmod{t}$	0	1	3	4	8
T (°F)	100	110	140	160	180

(a) Find the average rate of change of the temperature of the water over $0 \le t \le 8$. Include units.

(b) Was there some time t between t = 0 and t = 8 when the instantaneous rate of change of the temperature of the water was 10° F/min? Explain why or why not.

(c) Estimate $\int_0^8 T(t) dt$ using a method of your choice.

10. A rectangle is inscribed in the first quadrant region bounded by the x-axis, the y-axis, and the parabola $y = 9 - x^2$ as shown below. That is, the base of the rectangle is along the x-axis, its lower left corner is at the origin, and its upper right corner is on the parabola $y = 9 - x^2$. Find the length and width of the rectangle of greatest perimeter.

11. The function f is continuous for all values of x. Information about the sign of f' and f'' is organized in the table below.

	x < 1	1 < x < 2	2 < x < 3	x > 3
Sign of f'	_	—	+	-
Sign of f''	+	—	—	+

Mark each of the following statements as true (T) or false (F). You do not need to justify your answer.

- (a) f has a local minimum at x = 2
- (b) f is decreasing and concave down at x = 4
- (c) f has an inflection point at x = 1
- (d) f' is decreasing at x = 2.5
- (e) f' has a local extremum at x = 1

- 12. Consider the function $A(x) = \int_0^x \sin(t^2) dt$.
 - (a) Find A'(x).
 - (b) Find the x-value of the first positive critical number of A(x).

(c) At that first positive critical number you found in (b), does A(x) have a local max, a local min, or neither? Justify your answer.

13. You are bored so you begin to pour the salt out of a salt shaker at a constant rate of 3 cubic inches per second onto the table in such a way that it forms a conical pile whose height is always half the radius of the base. How fast is the base radius changing when the radius is 2 inches? Include units. (Recall that for a cone, $V = \frac{1}{3}\pi r^2 h$.)