Please do not write in these boxes.

1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL

MTH 1321
Spring 2019 Departmental Final Exam

Name: \qquad
Instructor: \qquad

NO CALCULATOR ALLOWED

Complete the following in the space provided. Show the steps or reasoning leading to your answer for full credit.

1. Let $f(x)=\left\{\begin{array}{ll}\sqrt{x}, & 0 \leq x \leq 4, \\ m x, & x>4,\end{array}\right.$ where m is a constant.
(a) Is there any value of m which makes f continuous at $x=4$? If so, find it. If not, explain why not.
(b) Find $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}$.
2. Let $f(x)=x^{3}$. Use the limit definition of the derivative to show that $f^{\prime}(x)=3 x^{2}$.
3. Let $f(x)=\frac{3 x^{2}+8}{(2 x+1)^{2}}$.
(a) Find all horizontal asymptotes for the graph of $y=f(x)$. Justify your answer using an appropriate limit.
(b) Find the slope of the line tangent to $y=f(x)$ at $x=0$.
4. A particle moves along the x-axis with velocity $v(t)=6(t-1)^{2}$. When $t=1$, the particle is at position $x=2$.
(a) Find the acceleration of the particle when $t=3$.
(b) Find the position of the particle when $t=3$.
5. Compute the following:
(a) Let $f(x)=2019+\tan ^{-1}(x)-\sqrt{x}$. Find $f^{\prime}(x)$.
(b) Let $g(x)=e^{-x} \cos (2 x)$. Find $\frac{d g}{d x}$. You do not need to simplify your answer.
6. Compute the following:
(a) Let $f(t)=[\ln (\sin t)]^{2}$. Find $f^{\prime}(t)$. You do not need to simplify your answer.
(b) If $(x+2 y) y=2 x-y$, find $\frac{d y}{d x}$ when $x=3$ and $y=1$.
7. Compute the following:
(a) $\int\left(2019+\sec x \tan x-e^{x}\right) d x$
(b) $\int_{0}^{1}(\sqrt[3]{x}-x) d x$
8. Compute the following:
(a) $\int_{-3}^{2} \frac{2 x}{x^{2}+5} d x$
(b) $\int \frac{x^{2}+5}{2 x} d x$
9. You begin to heat a pot of water on the stove. At time t (in minutes), the temperature $T\left(i n{ }^{\circ} \mathrm{F}\right)$ of the water is recorded below. For $0 \leq t \leq 8, T$ is a differentiable function of t.

$t(\min)$	0	1	3	4	8
$T\left({ }^{\circ} \mathrm{F}\right)$	100	110	140	160	180

(a) Find the average rate of change of the temperature of the water over $0 \leq t \leq 8$. Include units.
(b) Was there some time t between $t=0$ and $t=8$ when the instantaneous rate of change of the temperature of the water was $10^{\circ} \mathrm{F} / \mathrm{min}$? Explain why or why not.
(c) Estimate $\int_{0}^{8} T(t) d t$ using a method of your choice.
10. A rectangle is inscribed in the first quadrant region bounded by the x-axis, the y-axis, and the parabola $y=9-x^{2}$ as shown below. That is, the base of the rectangle is along the x-axis, its lower left corner is at the origin, and its upper right corner is on the parabola $y=9-x^{2}$. Find the length and width of the rectangle of greatest perimeter.

11. The function f is continuous for all values of x. Information about the sign of f^{\prime} and $f^{\prime \prime}$ is organized in the table below.

	$x<1$	$1<x<2$	$2<x<3$	$x>3$
Sign of f^{\prime}	-	-	+	-
Sign of $f^{\prime \prime}$	+	-	-	+

Mark each of the following statements as true (T) or false (F). You do not need to justify your answer.
(a) f has a local minimum at $x=2$
(b) f is decreasing and concave down at $x=4$
(c) f has an inflection point at $x=1$
(d) f^{\prime} is decreasing at $x=2.5$
(e) f^{\prime} has a local extremum at $x=1$
12. Consider the function $A(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$.
(a) Find $A^{\prime}(x)$.
(b) Find the x-value of the first positive critical number of $A(x)$.
(c) At that first positive critical number you found in (b), does $A(x)$ have a local max, a local min, or neither? Justify your answer.
13. You are bored so you begin to pour the salt out of a salt shaker at a constant rate of 3 cubic inches per second onto the table in such a way that it forms a conical pile whose height is always half the radius of the base. How fast is the base radius changing when the radius is 2 inches? Include units. (Recall that for a cone, $V=\frac{1}{3} \pi r^{2} h$.)

