Please do not write in these boxes.

MTH 1321
Fall 2017 Departmental Final Exam

Name: \qquad
Instructor: \qquad

NO CALCULATOR ALLOWED

Complete the following in the space provided. Show the steps leading to your answer for full credit.

1. Compute the following limits.
(a) $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}-2 x-15}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x-\sqrt{x}}{x^{3}+2017}$
2. Suppose $f^{\prime}(a)=0$. Mark each of the following statements as true (T) (meaning "must be true") or false (F) (meaning "could be false"). You do not need to justify your answer.
(a) f is continuous at $x=a$.
(b) The line tangent to $y=f(x)$ at $x=a$ is horizontal.
(c) f has a local max or local min at $x=a$.
(d) $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=0$
(e) f has an inflection point at $x=a$.
3. Suppose $f(x)=e^{\cos x}, g(x)=\ln (4-3 x)$, and $h(x)=\tan ^{-1}(x)$.
(a) Find $[f(x) g(x)]^{\prime}$. You do not need to simplify your answer.
(b) Find $[h(\sqrt{x})]^{\prime}$. You do not need to simplify your answer.
4. Compute the following:
(a) $\int\left(3 \sec ^{2} x+\frac{1}{x^{2}}+2^{x}-4\right) d x$
(b) $\int_{0}^{\pi / 2} \sin x d x$
5. Let $f(x)=\frac{x}{1+x^{2}}$.
(a) Find the absolute maximum and minimum values of f on the interval $[0,3]$.
(b) Find the exact value of the area between the curve $y=f(x)$ and the x-axis for $0 \leq x \leq 3$.
6. (a) The graph of a twice-differentiable function g is shown below. Put these quantities in order from least to greatest: $g(0), g^{\prime}(-1)$, and $g^{\prime \prime}(2)$.

(b) Between classes you are standing in line to order a cup of coffee. When you have been in line for t minutes, there are a total of $p(t)$ people in the line.
Write a brief sentence interpreting $p(6)=12$ and $p^{\prime}(6)=2$ in the context of this problem. Include units.
7. Let $f(x)=\frac{1}{x}$. Use the limit definition of the derivative to compute $f^{\prime}(x)$.
8. Let $f(x)=x^{4}+4 x^{3}$.
(a) Find the intervals on which f is increasing/decreasing.
(b) Find and classify all local extrema of f.
(c) Find the intervals on which f is concave up/down.
(d) Find all inflection points of f.
9. Ship A is traveling due west toward Lighthouse Rock at a speed of $15 \mathrm{~km} / \mathrm{hr}$. Ship B is traveling due north away from Lighthouse Rock at a speed of $10 \mathrm{~km} / \mathrm{hr}$. Let x be the distance between Ship A and Lighthouse Rock at time t, and let y be the distance between Ship B and Lighthouse Rock at time t as shown below.

Find the rate of change (in $\mathrm{km} / \mathrm{hr}$) of the distance between the two ships when $x=4 \mathrm{~km}$ and $y=3 \mathrm{~km}$.
10. A marble rolls along the x-axis so that at any time $t>0$, its velocity is given by $v(t)=4-6 t^{2}$. If the marble is at position $x=7$ at time $t=1$, what is the position of the marble at time $t=2$?
11. Consider $f(x)=x+\frac{1}{x}$ on $1 \leq x \leq 2$. Find a value of c guaranteed by the Mean Value Theorem.
12. You ride your bike along a straight trail, recording your velocity $v(t)$ (in miles per hour) for selected values of t over the interval $0 \leq t \leq 1.5$ hours, as shown in the table below. For $0<t \leq 1.5, v(t)>0$.

$t(\mathrm{hrs})$	0	0.5	1.0	1.5
$v(t)(\mathrm{mi} / \mathrm{hr})$	0	12	8	18

(a) Use the data in the table to approximate your acceleration at time $t=1.25$ hours. Include units.
(b) Approximate $\int_{0}^{1.5} v(t) d t$ using a right Riemann sum with three subintervals of equal length (i.e., the R_{3} approximation) and values from the table. Include units.
(c) Interpret your answer in (b) in the context of this problem. Include units.
13. On Christmas Eve, snow begins to fall at a rate of $r(t)=t \sqrt{t^{2}+1}$ inches per hour, where t is measured in hours since midnight.
(a) Set up a function $A(x)$ which describes the accumulated amount (in inches) of snowfall x hours since midnight.
(b) How many inches of snow accumulate from midnight to 1 AM?
(c) Find the rate of change of the accumulation of snow at 1 AM. Include units.
(d) Find $A^{\prime \prime}(x)$ when $x=1$. Interpret this value in the context of this problem. Include units.

