Instructions: Complete seven of the following problems. Start a new page for each problem.

- 1. Let G be a finite group and let p be a prime number.
 - (a) How is the center of G defined? Z(G) =
 - (b) How is the centralizer of an element $x \in G$ defined? $C_G(x) =$
 - (c) State and prove the class equation for G.
 - (d) Show that if G is a nontrivial p-group, then Z(G) is nontrivial.
- 2. Let G be a finite group whose order is divisible by the prime number p.
 - (a) What is a Sylow p-subgroup of G?
 - (b) State the three Sylow theorems for G.
 - (c) What else can we say about the number of Sylow p-subgroups of G if we assume that G is a simple nonabelian group?
 - (d) Show that there is no simple group of order 80.
- 3. Let R be a commutative ring with $1 \neq 0$.
 - (a) Complete the definition: An ideal I of R is a maximal ideal if ...
 - (b) Show that R has at least one maximal ideal.
 - (c) Show that an ideal I of R is a maximal ideal if and only if R/I is a field.
- 4. Let F be a field.
 - (a) Briefly explain why the polynomial ring F[x] is a PID.
 - (b) Show that if $f(x) \in F[x]$ is a nonzero polynomial of degree n, then f(x) has at most n roots in F.
 - (c) Show that if F is finite, then the multiplicative group $F^{\times} = F \{0\}$ is cyclic.
- 5. Let F be a field and let $f(x) \in F[x]$ be a nonconstant polynomial.
 - (a) Define what it means for f(x) to be solvable by radicals over F. As part of your answer, also define what we mean by a radical field extension of F.
 - (b) Define the Galois group of f(x) and state Galois' theorem.
 - (c) Show that the polynomial $f(x) = x^5 6x^2 + 3$ is not solvable by radicals over \mathbb{Q} . You may take use (without proof) that f(x) has exactly three distinct real roots and one pair of complex conjugate roots.

6. Let $A \in M_5(\mathbb{C})$ and suppose that the Smith normal form of $tI - A \in M_5(\mathbb{C}[t])$ is

$$\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & t+1 & \\ & & & (t+1)^2(t-2)^2 \end{pmatrix}$$

- (a) Find the minimal polynomial of A.
- (b) Find the characteristic polynomial of A.
- (c) Find the rational normal form of A.
- (d) Find the Jordan normal form of A.
- (e) View $V = \mathbb{C}^5$ as a $\mathbb{C}[t]$ -module so that tv = Av for all $v \in V$. Use the fundamental theorem for finitely generated modules over a PID to explain why V is not a cyclic $\mathbb{C}[t]$ -module.
- 7. Let R be a commutative ring.
 - (a) Show that if $\pi: M \to N$ and $\sigma: N \to M$ are *R*-module homomorphisms such that $\pi \circ \sigma = \mathrm{id}_N$, then $M = \ker \pi \oplus \mathrm{im} \sigma$.
 - (b) Show that if $0 \to L \to M \to N \to 0$ is a short exact sequence of *R*-module homomorphisms and *N* is a free *R*-module, then $M \cong L \oplus N$.
- 8. Let R be a ring and let L be a simple left R-module.
 - (a) Show that $\operatorname{End}_R(L)$ is a division ring.
 - (b) Show that if R is a \mathbb{C} -algebra and $\dim_{\mathbb{C}}(L) < \infty$, then $\operatorname{End}_{R}(L) \cong \mathbb{C}$.
 - (c) Suppose R is a semisimple \mathbb{C} -algebra and $\dim_{\mathbb{C}}(R) < \infty$. Use part (b) and the Wedderburn-Artin theorem to show that $R \cong M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$.