- 1. Complete the following definitions (*carefully*)
 - (a) A subbasis for a topology on the set X is a collection \mathcal{B} of subsets of X such that ...
 - (b) Let X and Y be topological spaces and $q:X \to Y$ be continuous. Then q is a quotient map if \ldots
 - (c) Let $\{X_{\alpha}\}_{\alpha \in J}$ be an indexed family of topological spaces. A *basis* for the *product topology* on $\prod_{\alpha \in J} X_{\alpha}$ is given by ...
 - (d) A topological space X is locally connected if ...
 - (e) A topological space X is compact if ...
 - (f) Let X be a topological space. We say X is first countable if ...
 - (g) Let X be a topological space. Two functions $f, f' : [0, 1] \to X$ are path homotopic if ...
 - (h) Let X and Y be a topological spaces. X is a covering space of Y if ...
 - (i) Let X and Y be topological spaces. A map $f: X \to Y$ is *nulhomotopic* if ...

Spring 2022

- 2. Complete the following definitions (carefully)
 - (a) Let X be a topological space. A singular k-simplex is ...
 - (b) Let X be a topological space. The group $C_k(X)$ of singular k-chains is ...
 - (c) Let X be a topological space. The boundary map $\partial_k : C_k(X) \to C_{k-1}(X)$ is given by ...
 - (d) Let (X, A) be a pair of topological spaces. The group $C_k(X, A)$ of relative k-chains is ...
 - (e) Let (X, A) be a pair of topological spaces. The boundary map $\partial_k : H_k(X, A) \to H_{k-1}(X)$ in the long exact sequence of the pair (X, A) is given by ...
 - (f) Let X be a CW complex. The group $C_k^{CW}(X)$ of cellular k-chains is ...
 - (g) Let X be a CW complex. The boundary map $d_k : C_k^{CW}(X) \to C_{k-1}^{CW}(X)$ is given by ...
 - (h) Let X be a topological space and let G be an abelian group. The group $C^k(X;G)$ of singular k-cochains with coefficients in G is ...
 - (i) Let X be a topological space and let R be a commutative ring. The *cup product*

 $\cup: C^{i}(X, R) \times C^{j}(X; R) \to C^{i+j}(X; R)$

of singular cochains with coefficients in R is given by ...

- 3. Prove **exactly ONE** of the following theorems from class. You do not need to recopy the statement of the theorem.
 - (a) Let X and Y be compact spaces. If N is an open subset of $X \times Y$ and contains $\{x_0\} \times Y$, then there exists a neighborhood W of x_0 with $W \times Y \subseteq N$.
 - (b) Every metrizable space is normal.
 - (c) If X is a compact Hausdorff space , then X is a Baire space.
 - (d) Let $\pi : E \to B$ be a covering map with $\pi(e_0) = b_0$ and $\gamma : I \to B$ a path beginning at b_0 . Then γ lifts to a path $\tilde{\gamma} : I \to B$ beginning at e_0 . (*Nb*: you do not need to prove the uniqueness of the lift.)

- 4. Complete **TWO** of the following problems.
 - (a) Let X be a topological space.
 - i. Let $\{A_n\}_{n \in \omega}$ be a collection of connected subspaces of X and suppose that for each $n \in \omega, A_n \cap A_{n+1} \neq \emptyset$. Show that $\bigcup A_n$ is connected.
 - ii. Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of connected subspaces of X. Let A be a connected subspace of X with $A \cap A_{\alpha} \neq \emptyset$ for each $\alpha \in \Lambda$. Prove that $A \cup \bigcup A_{\alpha}$ is connected.
 - (b) Let X be a topological space and $A \subseteq X$. Show that if $x \in X$ and there is a sequence in A which converges to x, then $x \in \overline{A}$. Is the converse true? (prove it or give a counterexample)
 - (c) Prove that \mathbb{R}^1 is not homeomorphic to \mathbb{R}^2 .
 - (d) Show that a countable product of metric spaces is metric. Explain (briefly) why this does not hold for uncountable products

- 5. Complete **ALL** of the following problems.
 - (a) Prove that there is no retraction from the closed unit disc onto the unit circle.
 - (b) Let X be the *n*-fold dunce cap, i.e. the quotient space formed from the closed unit disc by identifying each point z of the unit circle with the points r(x), $r^2(x)$, $\dots r^{n-1}(x)$ where $r: S^1 \to S^1$ is given by rotation by $2\pi/n$. Find $\pi_1(X)$ (provide an informal justification).
 - (c) Show that space $\theta = S^1 \cup \{(x, 0) : -1 \le x \le 1\}$ and the space $X = S^1 \vee S^1$ are homotopy equivalent but not homeomorphic. (provide an informal justification).

- 6. Complete **exactly TWO** of the following problems.
 - (a) State and prove the Euler-Poincaré principle for Δ -complexes.
 - (b) State the Poincaré index theorem and use it to prove that every continuous (tangent) vector field on S^2 has at least one singular point.
 - (c) State the excision theorem and use it to calculate the groups $H_k(\mathbb{R}^3, \mathbb{R}^3 \setminus \{0\})$.

- 7. Complete exactly **TWO** of the following problems.
 - (a) Prove that the reduced homology groups of a star-shaped region in \mathbb{R}^n are trivial.
 - (b) Use the method of your choice to calculate the homology groups $H_k(S^2 \times S^2)$.
 - (c) Use a Mayer-Vietoris sequence to calculate the homology groups $H_k(\mathbb{R}^3 \setminus S^1)$, where we identify $S^1 = \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$.

Spring 2022

- 8. Complete **TWO** of the following problems.
 - (a) Let X be a topological space such that

$$H_k(X) \cong \begin{cases} \mathbb{Z} & \text{if } k = 0 \text{ or } k = 3; \\ \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } k = 1; \\ 0 & \text{otherwise.} \end{cases}$$

Use the universal coefficient theorem for homology to calculate the groups $H_k(X;G)$, where G is an abelian group.

- (b) Write (without proof) the cellular chain complex of $\mathbb{R}P^3$ with respect to its standard CW complex structure and then calculate the homology groups $H_k^{CW}(\mathbb{R}P^3) \cong H_k(\mathbb{R}P^3)$.
- (c) Use the cellular chain complex of $\mathbb{R}P^3$ from part (b) to calculate the cohomology groups $H^k_{CW}(\mathbb{R}P^3; G) \cong H^k(\mathbb{R}P^3; G)$, where G is an abelian group.