NAME: \qquad

APPLIED MATHEMATICS I 2022 QUALIFYING EXAM

- YOU HAVE 120 MINUTES
- SHOW YOUR WORKS WITH ENOUGH EXPLANATIONS

1. State the Lax-Milgram lemma.
2. Let $\Omega \subset \mathbb{R}^{d}, d \geq 2$ be a bounded domain with Lipschitz boundary and $\Gamma_{D} \subset \partial \Omega$ be a nonempty open subset of $\partial \Omega$. For functions in

$$
V_{D}=\left\{v \in H^{1}(\Omega):\left.v\right|_{\Gamma_{D}}=0\right\}
$$

state the Poincare inequality.
3. Let $\Omega \subset \mathbb{R}^{d}, d=2,3$ be a bounded domain with polygonal/polyhedral boundary and there are two disjoint open subsets Γ_{D}, Γ_{N} of $\partial \Omega$ such that $\partial \Omega=\overline{\Gamma_{D}} \cup \overline{\Gamma_{N}}$. Consider the boundary value problem

$$
\begin{align*}
-\Delta u & =f \quad \text { in } \Omega \tag{0.1a}\\
u & =0 \quad \text { on } \Gamma_{D} \tag{0.1b}\\
\frac{\partial u}{\partial \nu} & =u_{N} \quad \text { on } \Gamma_{N} . \tag{0.1c}
\end{align*}
$$

with given functions $f \in L^{2}(\Omega), u_{N} \in L^{2}\left(\Gamma_{N}\right)$. Introducing a new variable $\sigma=\operatorname{grad} u$ and function spaces

$$
\Sigma=L^{2}\left(\Omega ; \mathbb{R}^{d}\right), \quad V_{D}=\left\{v \in H^{1}(\Omega):\left.v\right|_{\Gamma_{D}}=0\right\}
$$

derive a variational equation of (0.1) with a bilinear form on $\Sigma \times V_{D}$ and a linear functional on $\Sigma \times V_{D}$.
4. For (0.1) the solution u of (0.1) satisfies

$$
\begin{equation*}
\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v d x=\int_{\Omega} f v d x+\int_{\Gamma_{N}} u_{N} v d S \quad \forall v \in V_{D} \tag{0.2}
\end{equation*}
$$

Assume that $V_{h} \subset V_{D}$ is the space of piecewise linear continuous finite elements for a triangulation of Ω such that the maximum diameter of simplices is $h>0$. Let $u_{h} \in V_{h}$ be the solution of

$$
\begin{equation*}
\int_{\Omega} \operatorname{grad} u_{h} \cdot \operatorname{grad} v d x=\int_{\Omega} f v d x+\int_{\Gamma_{N}} u_{N} v d S \quad \forall v \in V_{h} \tag{0.3}
\end{equation*}
$$

Assuming $u \in H^{2}(\Omega)$, prove that $\left\|\operatorname{grad}\left(u-u_{h}\right)\right\|_{L^{2}(\Omega)} \leq C h\|u\|_{H^{2}(\Omega)}$ with a constant $C>0$ independent of h.
5. Let u be the solution of (0.1) and u_{h} be the solution of (0.3). Assume that $u \in H^{2}(\Omega)$ and for any $g \in L^{2}(\Omega)$ the solution ϕ of

$$
-\Delta \phi=g \quad \text { in } \Omega, \quad \phi=0 \quad \text { on } \partial \Omega,
$$

satisfies $\|\phi\|_{H^{2}(\Omega)} \leq C_{\Omega}\|g\|_{L^{2}(\Omega)}$ with $C_{\Omega}>0$ depending only on Ω. Based on the conclusion of Problem 4 and these assumptions, prove that $\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C h^{2}\|u\|_{H^{2}(\Omega)}$ with $C>0$ independent of h.
6. For a triangle $T \subset \mathbb{R}^{2}$ define $\mathrm{RT}(T)$, a subspace of vector-valued polynomials on T, by

$$
\operatorname{RT}(T)=\left\{\binom{a}{b}+c\binom{x}{y}: a, b, c \in \mathbb{R}\right\}
$$

Here x, y are the coordinates of \mathbb{R}^{2}. Let $F_{i}, i=0,1,2$ be the edges of T, and n_{i} be the outward unit normal vectors on $F_{i}, i=0,1,2$. Define the degrees of freedom of $\operatorname{RT}(T)$ by

$$
\int_{F_{i}} \tau \cdot n_{i} d S, \quad i=0,1,2, \quad \tau \in \mathrm{RT}(T)
$$

(1) Prove that an element in $\operatorname{RT}(T)$ is uniquely determined by the above degrees of freedom.
(2) Suppose that ϕ is an \mathbb{R}^{2}-valued C^{1}-function on T and define $\Pi_{R T} \phi \in \mathrm{RT}(T)$ by

$$
\int_{F_{i}} \Pi_{\mathrm{RT}} \phi \cdot n_{i} d S=\int_{F_{i}} \phi \cdot n_{i} d S, \quad i=0,1,2
$$

Prove that $\int_{T}\left(\operatorname{div} \Pi_{R T} \phi-\operatorname{div} \phi\right) d x=0$.
7. Let V_{h} be a space of piecewise continuous finite element space on Ω satisfying the Poincare inequality. Suppose that $u_{h}(t) \in C^{1}\left([0, T] ; V_{h}\right)$ be a solution of semidiscrete heat equation satisfying

$$
\int_{\Omega} \partial_{t} u_{h}(t) v d x+\int_{\Omega} \operatorname{grad} u_{h}(t) \cdot \operatorname{grad} v d x=\int_{\Omega} f(t) v d x \quad \forall v \in V_{h}, \forall t \geq 0
$$

Show that

$$
\left\|u_{h}(T)\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\left\|\operatorname{grad} u_{h}(s)\right\|_{L^{2}(\Omega)}^{2} d s \leq\left\|u_{h}(0)\right\|_{L^{2}(\Omega)}^{2}+C \int_{0}^{T}\|f(s)\|_{L^{2}(\Omega)}^{2} d s
$$

with $C>0$ independent of T.

