NAME : _____

APPLIED MATHEMATICS I 2022 QUALIFYING EXAM

• YOU HAVE 120 MINUTES

• SHOW YOUR WORKS WITH ENOUGH EXPLANATIONS

1. State the Lax-Milgram lemma.

2. Let $\Omega \subset \mathbb{R}^d$, $d \geq 2$ be a bounded domain with Lipschitz boundary and $\Gamma_D \subset \partial \Omega$ be a nonempty open subset of $\partial \Omega$. For functions in

$$V_D = \{ v \in H^1(\Omega) : v |_{\Gamma_D} = 0 \}$$

state the Poincare inequality.

3. Let $\Omega \subset \mathbb{R}^d$, d = 2, 3 be a bounded domain with polygonal/polyhedral boundary and there are two disjoint open subsets Γ_D , Γ_N of $\partial\Omega$ such that $\partial\Omega = \overline{\Gamma_D} \cup \overline{\Gamma_N}$. Consider the boundary value problem

$$-\Delta u = f \qquad \text{in } \Omega, \tag{0.1a}$$

$$u = 0 \quad \text{on } \Gamma_D,$$
 (0.1b)

$$\frac{\partial u}{\partial \nu} = u_N \quad \text{on } \Gamma_N.$$
 (0.1c)

with given functions $f \in L^2(\Omega)$, $u_N \in L^2(\Gamma_N)$. Introducing a new variable $\sigma = \operatorname{grad} u$ and function spaces

$$\Sigma = L^2(\Omega; \mathbb{R}^d), \qquad V_D = \{ v \in H^1(\Omega) : v|_{\Gamma_D} = 0 \}$$

derive a variational equation of (0.1) with a bilinear form on $\Sigma \times V_D$ and a linear functional on $\Sigma \times V_D$.

4. For (0.1) the solution u of (0.1) satisfies

$$\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \, dx = \int_{\Omega} f v \, dx + \int_{\Gamma_N} u_N v \, dS \qquad \forall v \in V_D.$$
(0.2)

Assume that $V_h \subset V_D$ is the space of piecewise linear continuous finite elements for a triangulation of Ω such that the maximum diameter of simplices is h > 0. Let $u_h \in V_h$ be the solution of

$$\int_{\Omega} \operatorname{grad} u_h \cdot \operatorname{grad} v \, dx = \int_{\Omega} f v \, dx + \int_{\Gamma_N} u_N v \, dS \qquad \forall v \in V_h.$$

$$(0.3)$$

Assuming $u \in H^2(\Omega)$, prove that $\|\operatorname{grad}(u-u_h)\|_{L^2(\Omega)} \leq Ch \|u\|_{H^2(\Omega)}$ with a constant C > 0 independent of h.

5. Let u be the solution of (0.1) and u_h be the solution of (0.3). Assume that $u \in H^2(\Omega)$ and for any $g \in L^2(\Omega)$ the solution ϕ of

$$-\Delta \phi = g$$
 in Ω , $\phi = 0$ on $\partial \Omega$,

satisfies $\|\phi\|_{H^2(\Omega)} \leq C_{\Omega} \|g\|_{L^2(\Omega)}$ with $C_{\Omega} > 0$ depending only on Ω . Based on the conclusion of Problem 4 and these assumptions, prove that $\|u-u_h\|_{L^2(\Omega)} \leq Ch^2 \|u\|_{H^2(\Omega)}$ with C > 0 independent of h.

6. For a triangle $T \subset \mathbb{R}^2$ define $\operatorname{RT}(T)$, a subspace of vector-valued polynomials on T, by

$$\operatorname{RT}(T) = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix} : a, b, c \in \mathbb{R} \right\}.$$

Here x, y are the coordinates of \mathbb{R}^2 . Let F_i , i = 0, 1, 2 be the edges of T, and n_i be the outward unit normal vectors on F_i , i = 0, 1, 2. Define the degrees of freedom of $\operatorname{RT}(T)$ by

$$\int_{F_i} \tau \cdot n_i \, dS, \qquad i = 0, 1, 2, \quad \tau \in \operatorname{RT}(T).$$

- (1) Prove that an element in RT(T) is uniquely determined by the above degrees of freedom.
- (2) Suppose that ϕ is an \mathbb{R}^2 -valued C^1 -function on T and define $\Pi_{\mathrm{RT}}\phi \in \mathrm{RT}(T)$ by

$$\int_{F_i} \Pi_{\mathrm{RT}} \phi \cdot n_i \, dS = \int_{F_i} \phi \cdot n_i \, dS, \qquad i = 0, 1, 2$$

Prove that $\int_T (\operatorname{div} \Pi_{\mathrm{RT}} \phi - \operatorname{div} \phi) \, dx = 0.$

7. Let V_h be a space of piecewise continuous finite element space on Ω satisfying the Poincare inequality. Suppose that $u_h(t) \in C^1([0,T];V_h)$ be a solution of semidiscrete heat equation satisfying

$$\int_{\Omega} \partial_t u_h(t) v \, dx + \int_{\Omega} \operatorname{grad} u_h(t) \cdot \operatorname{grad} v \, dx = \int_{\Omega} f(t) v \, dx \qquad \forall v \in V_h, \forall t \ge 0.$$

Show that

$$\|u_h(T)\|_{L^2(\Omega)}^2 + \int_0^T \|\operatorname{grad} u_h(s)\|_{L^2(\Omega)}^2 \, ds \le \|u_h(0)\|_{L^2(\Omega)}^2 + C \int_0^T \|f(s)\|_{L^2(\Omega)}^2 \, ds$$

with C > 0 independent of T.