Instructions: Choose 5 problems to solve and turn in your solutions via e-mail by **May 25, 2021**. This exam is open book, open notes. You are to work *individually* on this exam–absolutely no consulting with others.

- **1** [10 points] Let $f: [0, \infty) \to \mathbb{R}$ be Lebesgue integrable.
 - (a) Show that if f is uniformly continuous, then $\lim_{x\to\infty}f(x)=0.$
 - (b) Is it sufficient for f to be continous? Give a proof or a counterexample.

2 [10 points] Let (X, \mathcal{M}, μ) be a measure space and let f be a nonnegative μ -integrable function such that for each $n \in \mathbb{N}$,

$$\int f(x)^n d\mu = \int f(x) d\mu.$$

- (a) Show that the set $G = \{x \in X : f(x) > 1\}$ has measure zero.
- (b) Show that there exists some measurable set $E \in \mathcal{M}$ such that $f = \chi_E \mu$ -a.e.

3 [10 points] Let (X, \mathcal{B}) be a measurable space and $\langle \mu_n \rangle$ a sequence of finite measures on (X, \mathcal{B}) that converge setwise to a finite measure μ (i.e. for each $E \in \mathcal{B}$, $\mu_n(E)$ converges to $\mu(E)$) and $\langle f_n \rangle$ a sequence of nonnegative measurable functions on X that converge pointwise to the function f. Prove that

$$\int f \ d\mu \le \liminf \int f_n \ d\mu_n.$$

Hint: Observe that if $\phi \leq f$ is a simple function, then, for all $\epsilon > 0$,

$$X = \bigcup_{n \in \mathbb{N}} \{ x : f_k(x) \ge (1 - \epsilon)\phi(x) \text{ for all } k \ge n \}$$

4 [10 points] Let $1 \le p < \infty$, and let $L^p(\mathbb{R}^n)$ be endowed with its standard norm $||f||_p = \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{1/p}$. Let g be a measurable function on \mathbb{R}^n . Define X_g to be the subspace of all $f \in L^p(\mathbb{R}^n)$ such that $fg \in L^p(\mathbb{R}^n)$, and endow X_g with the same norm as L^p . Let $T: X_g \to L^p(\mathbb{R}^n)$ be given by Tf = fg.

- (a) Show that T is closed.
- (b) Show that T is bounded if and only if $g \in L^{\infty}(\mathbb{R}^n)$.

5 [10 points] Let $f \in L^2(\mathbb{R})$. For each $k \in \mathbb{Z}$ define

$$f_k(x) = \int_k^{k+1} e^{2\pi i x \xi} \hat{f}(\xi) \,\mathrm{d}\xi.$$

Prove that

$$f = \sum_{k \in \mathbb{Z}} f_k,$$

where the sum converges in $L^2(\mathbb{R})$. (Hints: Prove that $\hat{f}\chi_{[k,k+1)} \in L^1$ for each k and apply the inverse Fourier transform. Use Exercise 60 from Chapter 5 in Folland.)

6 [10 points] Let H be a Hilbert space and let $\{x_n\}$ be a sequence that converges weakly to x in H.

- (a) Show that $||x|| \leq \liminf ||x_n||$. (Hint: $\langle x, x \rangle = \lim_{k \to \infty} \langle x_{n_k}, x \rangle$ for any subsequence $\{x_{n_k}\}$.)
- (b) If $||x_n|| \to ||x||$, show that $x_n \to x$ strongly.

[7] [10 points] Let (X, μ) be a finite measure space. Let $\{f_n\}$ be a sequence in $L^p(X, \mu)$ and let $f \in L^p(X, \mu)$. Assume $f_n \to f$ a.e. and that $||f_n||_p$ is bounded. Prove that $||f_n - f||_q \to 0$ for all $1 \le q < p$. (Hint: use Egorov's Theorem and Hölder's inequality.)