BAYLOR UNIVERSITY

Department of Mathematics

Ph.D Comprehensive Examination: Applied Math Part II Summer, 2021

INSTRUCTIONS:

- Do ALL problems. This part of the exam takes up to $\mathbf{1 2 0}$ minutes to complete.
- Write your results clearly so that a scanned copy can be emailed.
- You will be graded on how you arrived at the final answer. Show your detailed work.

1. Consider the numerical solution of the IVP

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad t \geq t_{0}, y\left(t_{0}\right)=y_{0} \tag{1.1}
\end{equation*}
$$

where f satisfies a Lipschitz condition in the second variable.
(a) State the definition of well-posedness for (1.1).
(b) Show that the following trapezoidal rule method is convergent for (1.1).

$$
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right], \quad n=0,1,2, \ldots
$$

(c) Show that the following implicit Runge-Kutta method for solving (1.1) is A-stable.

$1 / 3$	$5 / 12$	$-1 / 12$
1	$3 / 4$	$1 / 4$
	$3 / 4$	$1 / 4$

2. Consider the following IBVP:

$$
\begin{align*}
& u_{t}=u_{x x}+\kappa u_{x}+f(x), \quad-1<x<1, t>t_{0} \tag{3.1}\\
& u(-1, t)=u(1, t)=0, \quad t \geq t_{0} \tag{3.2}\\
& u(x, 0)=\phi(x), \quad-1<x<1 \tag{3.3}
\end{align*}
$$

where $\kappa \in \mathbb{R}$ is a constant and ϕ is sufficiently smooth on $(-1,1)$.
(a) Derive a semi-discretized scheme for solving (3.1)-(3.3) based on a central finite difference approximation to the spatial derive on uniform grids. Show that your scheme is consistent.
(b) Use the Milne device to derive a posteriori error estimator for your semi-discretized scheme.
(c) Derive a fully discretized scheme method based on your semidiscrezed scheme and a forward Euler method. Show the consistency.
3. Let $y=f(x), x \in \mathbb{R}$, be sufficiently smooth and

$$
\Delta_{+} f(x)=\frac{f(x+p)-f(x)}{p}, \quad \Delta_{-} f(x)=\frac{f(x)-f(x-q)}{q},
$$

where $0<p, q \ll 1, p \neq q$.
(a) Show that in general $\Delta_{+} \Delta_{-} f(x) \neq \Delta_{-} \Delta_{+} f(x)$.
(b) Show that neither $\Delta_{+} \Delta_{-} f(x)$ nor $\Delta_{-} \Delta_{+} f(x)$ is a consistent approximation of the derivative $f^{\prime \prime}(x), x \in \mathbb{R}$.
(c) [optional] Derive a consistent finite difference formula approximating $f^{\prime \prime}(x)$ utilizing the above steps p, q for $x \in \mathbb{R}$.

