Instructions: Complete eight of the following problems. Start a new page for each problem.

1. Let G be a group.

 (a) A normal subgroup of G is a subgroup N of G such that ...

 (b) If N is a normal subgroup of G, how are the quotient group G/N and the quotient homomorphism $\pi : G \to G/N$ defined?

 (c) If $\varphi : G \to H$ is a group homomorphism, then $\ker \varphi = \ldots$

 (d) Suppose N is a normal subgroup of G and $\pi : G \to G/N$ is the quotient homomorphism. If $\varphi : G \to H$ is a group homomorphism such that $N \subseteq \ker \varphi$, show that there exists a unique homomorphism $\overline{\varphi} : G/N \to H$ such that $\overline{\varphi}(aN) = \varphi(a)$.

2. Let G be a group acting on the set X and let $x \in X$.

 (a) The orbit of x, denoted $O(x)$, is the set \ldots

 (b) The stabilizer of x, denoted G_x, is the subgroup \ldots

 (c) State and prove the Orbit-Stabilizer Theorem.

 (d) If $y \in O(x)$, show that G_x and G_y are conjugate subgroups of G.

3. Let G be a finite group whose order is divisible by the prime p.

 (a) What is a Sylow p-subgroup of G?

 (b) State the three Sylow Theorems.

 (c) If G is non-abelian and simple, explain why G must have more than one Sylow p-subgroup.

 (d) If p and q are distinct primes, show that there is no simple group of order p^2q.

4. Let R be an integral domain

 (a) Define: An element $p \in R$ is irreducible if \ldots

 (b) Define: An element $p \in R$ is prime if \ldots

 (c) Show that every prime element $p \in R$ is irreducible.

 (d) If R is a UFD, show that every irreducible element $p \in R$ is prime.

5. Let p be a prime.

 (a) A field F has characteristic p if \ldots

 (b) Give an example of an infinite field of characteristic p.

 (c) Show that for every positive integer n there exists a finite field of order p^n

 (d) Explain why the field in part (c) is unique (up to isomorphism).
6. Let E be the splitting field of $f(x) = x^3 - 2$ over \mathbb{Q}.
 (a) Show that $f(x)$ is irreducible over \mathbb{Q}.
 (b) Show that $[E : \mathbb{Q}] = 6$.
 (c) Find the Galois group of E/\mathbb{Q}.
 (d) Give an example of an intermediate field $\mathbb{Q} \leq K \leq E$ such that K/\mathbb{Q} is not a normal extension. Justify your answer.

7. Let R be a commutative ring.
 (a) What does it mean for an R-module M to be finitely generated?
 (b) State the Fundamental Structure Theorem of finitely generated modules over a PID.
 (c) Determine (up to isomorphism) all abelian groups of order 144. Write each group in “invariant factor form” and in “elementary divisor form.”
 (d) Give an example of a finitely generated abelian group that is neither free nor finite.

8. Let R be a commutative ring.
 (a) What is an exact sequence of R-modules?
 (b) A short exact sequence $0 \rightarrow M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} M_3 \rightarrow 0$ is split exact if ...
 (c) Consider a commutative diagram of R-module homomorphisms with exact rows:

 $\begin{array}{ccc}
 0 & \rightarrow & M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} M_3 \rightarrow 0 \\
 \alpha_1 \downarrow & & \alpha_2 \downarrow & & \alpha_3 \downarrow \\
 0 & \rightarrow & M'_1 \xrightarrow{\varphi'_1} M'_2 \xrightarrow{\varphi'_2} M'_3 \rightarrow 0
 \end{array}$

 If α_1 and α_3 are isomorphisms, show that α_2 is also an isomorphism.

9. Let M be an R-module.
 (a) The module M is simple if ...
 (b) The module M is semisimple if one of the following three conditions is satisfied: ...
 (c) Give an example of a \mathbb{Z}-module of the form $\mathbb{Z}/n\mathbb{Z}$ that is semisimple but not simple. Justify your answer.
 (d) Give an example of a \mathbb{Z}-module of the form $\mathbb{Z}/n\mathbb{Z}$ that is not semisimple. Justify your answer.