Instructions: Complete eight of the following problems. Start a new page for each problem.

- 1. Let G be a group.
 - (a) A normal subgroup of G is a subgroup N of G such that ...
 - (b) If N is a normal subgroup of G, how are the quotient group G/N and the quotient homomorphism $\pi: G \to G/N$ defined?
 - (c) If $\varphi: G \to H$ is a group homomorphism, then ker $\varphi = \dots$
 - (d) Suppose N is a normal subgroup of G and $\pi: G \to G/N$ is the quotient homomorphism. If $\varphi: G \to H$ is a group homomorphism such that $N \leq \ker \varphi$, show that there exists a unique homomorphism $\overline{\varphi}: G/N \to H$ such that $\overline{\varphi}(aN) = \varphi(a)$.
- 2. Let G be a group acting on the set X and let $x \in X$.
 - (a) The orbit of x, denoted $\mathcal{O}(x)$, is the set ...
 - (b) The stabilizer of x, denoted G_x , is the subgroup ...
 - (c) State and prove the Orbit-Stabilizer Theorem.
 - (d) If $y \in \mathcal{O}(x)$, show that G_x and G_y are conjugate subgroups of G.
- 3. Let G be a finite group whose order is divisible by the prime p.
 - (a) What is a Sylow *p*-subgroup of G?
 - (b) State the three Sylow Theorems.
 - (c) If G is non-abelian and simple, explain why G must have more than one Sylow p-subgroup.
 - (d) If p and q are distinct primes, show that there is no simple group of order p^2q .
- 4. Let R be an integral domain
 - (a) Define: An element $p \in R$ is irreducible if ...
 - (b) Define: An element $p \in R$ is prime if ...
 - (c) Show that every prime element $p \in R$ is irreducible.
 - (d) If R is a UFD, show that every irreducible element $p \in R$ is prime.
- 5. Let p be a prime.
 - (a) A field F has characteristic p if ...
 - (b) Give an example of an infinite field of characteristic p.
 - (c) Show that for every positive integer n there exists a finite field of order p^n
 - (d) Explain why the field in part (c) is unique (up to isomorphism).

- 6. Let E be the splitting field of $f(x) = x^3 2$ over \mathbb{Q} .
 - (a) Show that f(x) is irreducible over \mathbb{Q} .
 - (b) Show that $[E : \mathbb{Q}] = 6$.
 - (c) Find the Galois group of E/\mathbb{Q} .
 - (d) Give an example of an intermediate field $\mathbb{Q} \leq K \leq E$ such that K/\mathbb{Q} is not a normal extension. Justify your answer.
- 7. Let R be a commutative ring.
 - (a) What does it mean for an *R*-module *M* to be finitely generated?
 - (b) State the Fundamental Structure Theorem of finitely generated modules over a PID.
 - (c) Determine (up to isomorphism) all abelian groups of order 144. Write each group in "invariant factor form" and in "elementary divisor form."
 - (d) Give an example of a finitely generated abelian group that is neither free nor finite.
- 8. Let R be a commutative ring.
 - (a) What is an exact sequence of R-modules?
 - (b) A short exact sequence $0 \longrightarrow M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_1} M_3 \longrightarrow 0$ is split exact if ...
 - (c) Consider a commutative diagram of *R*-module homomorphisms with exact rows:

If α_1 and α_3 are isomorphisms, show that α_2 is also an isomorphism.

9. Let M be an R-module.

- (a) The module M is simple if ...
- (b) The module M is semisimple if one of the following three conditions is satisfied: ...
- (c) Give an example of a \mathbb{Z} -module of the form $\mathbb{Z}/n\mathbb{Z}$ that is semisimple but not simple. Justify your answer.
- (d) Give an example of a \mathbb{Z} -module of the form $\mathbb{Z}/n\mathbb{Z}$ that is not semisimple. Justify your answer.