- 1. Complete the following definitions (*carefully*)
 - (a) A basis for a topology on the set X is a collection \mathcal{B} of subsets of X such that ...
 - (b) The point x is a *limit point* of the set A in a topological space X provided that ...
 - (c) Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if ...
 - (d) Let $\{X_{\alpha}\}_{\alpha \in J}$ be an indexed family of topological spaces. A basis for the product topology on $\prod_{\alpha \in J} X_{\alpha}$ is given by ...
 - (e) Let X be topological space. The *component* of x in X is ...
 - (f) Let X be a topological space. We say X is Hausdorff if ...
 - (g) Let X and Y be topological spaces. Two functions $f, f': X \to Y$ are homotopic if ...
 - (h) Let X and Y be a topological spaces and $f: X \to Y$ a continuous map. A set $U \subseteq Y$ is evenly covered by f if ...
 - (i) Let X be a topological space and A a subset of X. Then A is a *deformation retract* of X if ...

- 2. Complete the following definitions (carefully)
 - (a) Let X be a topological space. The (singular) homology group $H_k(X)$ is ...
 - (b) Let $f: X \to Y$ be a continuous map. Then $f_*: H_i(X) \to H_i(Y)$ is given by ...
 - (c) Let (X, A) be a pair of topological space. The relative homology group $H_k(X, A)$ is ...
 - (d) Let (X, A) be a pair of topological space. Then $\partial : H_k(X, A) \to H_{k-1}(X)$ is given by ...
 - (e) A pair (X, A) of topological spaces is called a *good pair* if ...
 - (f) Let X be a CW complex. The cellular homology group $H_i^{CW}(X)$ is ...
 - (g) Let $f: S^n \to S^n$ be a continuous map. Then the *degree* of f is ...
 - (h) Let X be a topological space and let G be an abelian group. The (singular) cohomology group $H^i(X;G)$ is ...
 - (i) Let $f: X \to Y$ be a continuous map. Then $f^*: H^i(Y; G) \to H^i(Y; G)$ is given by ...

- 3. Prove **exactly ONE** of the following theorems from class. You do not need to recopy the statement of the theorem.
 - (a) A nonempty subset $A \subseteq \mathbb{R}^n$ is compact if and only if A is closed and bounded (in the standard metric on \mathbb{R}^n).
 - (b) The product of finitely many compact space is compact. *NB: If you use any lemmas in this argument, you must also prove them*
 - (c) If X is a compact Hausdorff space, then X is a Baire space.
 - (d) Let $\pi : E \to B$ be a covering map with $\pi(e_0) = b_0$ and $\gamma : I \to B$ a path beginning at b_0 . Then γ lifts to a path $\tilde{\gamma} : I \to B$ beginning at e_0 . (*Nb*: you do not need to prove the uniqueness of the lift.)

- 4. Complete **TWO** of the following problems.
 - (a) Let $A, B \subseteq X$, a topological space.
 - i. Show that if A is connected and $A \subseteq B \subseteq \overline{A}$, then B is also connected.
 - ii. Prove or give a counterexample for each of the following equations: (1) $\overline{A} \cup \overline{B} = \overline{A \cup B}$ and (2) $\overline{A} \cap \overline{B} = \overline{A \cap B}$.
 - iii. Show that if A and B are connected, then $A \times B$ is connected.
 - (b) Suppose that $q: X \to Y$ is a quotient map. Prove that if $p^{-1}(y)$ is connected for each y and Y is connected, then so is X.
 - (c) Show that a compact Hausdorff space is normal.
 - (d) Show that a countable product of separable spaces is separable.

- 5. Complete **ALL** of the following problems.
 - (a) Prove that the fundamental group of the circle is isomorphic to \mathbb{Z} .
 - (b) Let X be the complement of the z-axis in \mathbb{R}^3 . Find $\pi_1(X)$ (provide an informal justification).
 - (c) Let Y be the space obtained by removing three distinct points from \mathbb{R}^2 . Find $\pi_1(Y)$ (provide an informal justification).

- 6. Complete **exactly TWO** of the following problems.
 - (a) Let $f, g: X \to Y$ be two homotopic continuous maps and let $f_*, g_*: H_k(X) \to H_k(Y)$ be the induced homomorphisms in homology. Sketch a proof that $f_* = g_*$.
 - (b) State the snake lemma and explain how it is used to construct the long exact sequence in homology of a pair of topological spaces (X, A).
 - (c) Let X be a CW complex with no two cells in adjacent dimensions. Prove that $H_k^{CW}(X)$ is a free abelian group with a basis in one-to-one correspondence with the k-cells of X.

Spring 2021

- 7. Complete exactly **TWO** of the following problems.
 - (a) Use the long exact sequence of the good pair (D^n, S^{n-1}) to prove that

$$H_k(S^n) \cong \begin{cases} \mathbb{Z} & \text{if } k = n \text{ or } k = 0; \\ 0 & \text{otherwise.} \end{cases}$$

Remark: You may use without proof that the quotient D^n/S^{n-1} is homeomorphic to S^n .

- (b) Calculate the local homology groups $H_k(\mathbb{R}^n, \mathbb{R}^n \{x\})$ and then use the result to prove that \mathbb{R}^n is homeomorphic to \mathbb{R}^m if and only if n = m.
- (c) Prove that the antipodal map $f: S^n \to S^n$, $x \mapsto -x$, has degree $(-1)^{n+1}$.

Spring 2021

- 8. Complete exactly **TWO** of the following problems.
 - (a) Let K^2 be the Klein bottle equipped with a Δ -complex structure as shown below:

Use the $\Delta\text{-}\mathrm{complex}$ structure to show that

$$H_k(K^2) \cong \begin{cases} \mathbb{Z} & \text{if } k = 0, \\ \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}) & \text{if } k = 1, \\ 0 & \text{if } k \ge 2. \end{cases}$$

(b) Let K^2 be the Klein bottle as above. Use the universal coefficient theorem to compute the cohomology groups $H^k(K^2; G)$, where G is an abelian group.

Remark: You may use without proof the following facts from homological algebra:

- Hom(_, G) and $Ext^{1}(_, G)$ are additive functors
- $\operatorname{Hom}(\mathbb{Z}, G) \cong G$
- Hom $(\mathbb{Z}/n\mathbb{Z}, G) \cong T_n(G) := \{g \in G \mid ng = 0\}$
- $\operatorname{Ext}^1(\mathbb{Z}, G) = 0$
- $\operatorname{Ext}^1(\mathbb{Z}/n\mathbb{Z}, G) \cong G/nG$
- (c) Use a Mayer–Vietoris sequence to calculate the homology groups of a disk in the plane with two circular holes.