
Topology Qualifying Exam
Spring 2021

1. Complete the following de�nitions (carefully)

(a) A basis for a topology on the set X is a collection B of subsets of X such that . . .

(b) The point x is a limit point of the set A in a topological space X provided that . . .

(c) Let X and Y be topological spaces. A function f : X → Y is continuous if . . .

(d) Let {Xα}α∈J be an indexed family of topological spaces. A basis for the product topology
on

∏
α∈J Xα is given by . . .

(e) Let X be topological space. The component of x in X is . . .

(f) Let X be a topological space. We say X is Hausdor� if . . .

(g) Let X and Y be topological spaces. Two functions f, f ′ : X → Y are homotopic if . . .

(h) Let X and Y be a topological spaces and f : X → Y a continuous map. A set U ⊆ Y is
evenly covered by f if . . .

(i) Let X be a topological space and A a subset of X . Then A is a deformation retract of X if
. . .
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2. Complete the following de�nitions (carefully)

(a) Let X be a topological space. The (singular) homology group Hk(X) is . . .

(b) Let f : X → Y be a continuous map. Then f∗ : Hi(X)→ Hi(Y ) is given by . . .

(c) Let (X,A) be a pair of topological space. The relative homology group Hk(X,A) is . . .

(d) Let (X,A) be a pair of topological space. Then ∂ : Hk(X,A)→ Hk−1(X) is given by . . .

(e) A pair (X,A) of topological spaces is called a good pair if . . .

(f) Let X be a CW complex. The cellular homology group HCW
i (X) is . . .

(g) Let f : Sn → Sn be a continuous map. Then the degree of f is . . .

(h) Let X be a topological space and let G be an abelian group. The (singular) cohomology
group Hi(X;G) is . . .

(i) Let f : X → Y be a continuous map. Then f∗ : Hi(Y ;G)→ Hi(Y ;G) is given by . . .
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3. Prove exactly ONE of the following theorems from class. You do not need to recopy the statement
of the theorem.

(a) A nonempty subset A ⊆ Rn is compact if and only if A is closed and bounded (in the
standard metric on Rn).

(b) The product of �nitely many compact space is compact. NB: If you use any lemmas in this
argument, you must also prove them

(c) If X is a compact Hausdor� space , then X is a Baire space.
(d) Let π : E → B be a covering map with π (e0) = b0 and γ : I → B a path beginning at

b0. Then γ li�s to a path γ̃ : I → B beginning at e0. (Nb: you do not need to prove the
uniqueness of the li�.)
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4. Complete TWO of the following problems.

(a) Let A,B ⊆ X , a topological space.
i. Show that if A is connected and A ⊆ B ⊆ A, then B is also connected.
ii. Prove or give a counterexample for each of the following equations: (1) A ∪B = A ∪B
and (2) A ∩B = A ∩B.

iii. Show that if A and B are connected, then A×B is connected.
(b) Suppose that q : X → Y is a quotient map. Prove that if p−1(y) is connected for each y and

Y is connected, then so is X .
(c) Show that a compact Hausdor� space is normal.
(d) Show that a countable product of separable spaces is separable.
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5. Complete ALL of the following problems.

(a) Prove that the fundamental group of the circle is isomorphic to Z.
(b) LetX be the complement of the z-axis in R3. Find π1(X) (provide an informal justi�cation).
(c) Let Y be the space obtained by removing three distinct points from R2. Find π1(Y ) (provide

an informal justi�cation).
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6. Complete exactly TWO of the following problems.

(a) Let f, g : X → Y be two homotopic continuous maps and let f∗, g∗ : Hk(X) → Hk(Y ) be
the induced homomorphisms in homology. Sketch a proof that f∗ = g∗.

(b) State the snake lemma and explain how it is used to construct the long exact sequence in
homology of a pair of topological spaces (X,A).

(c) Let X be a CW complex with no two cells in adjacent dimensions. Prove that HCW
k (X) is a

free abelian group with a basis in one-to-one correspondence with the k-cells of X .
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7. Complete exactly TWO of the following problems.

(a) Use the long exact sequence of the good pair (Dn, Sn−1) to prove that

Hk(Sn) ∼=

Z if k = n or k = 0;

0 otherwise.

Remark: You may use without proof that the quotient Dn/Sn−1 is homeomorphic to Sn.

(b) Calculate the local homology groupsHk(Rn,Rn−{x}) and then use the result to prove that
Rn is homeomorphic to Rm if and only if n = m.

(c) Prove that the antipodal map f : Sn → Sn, x 7→ −x, has degree (−1)n+1.
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8. Complete exactly TWO of the following problems.

(a) Let K2 be the Klein bottle equipped with a ∆-complex structure as shown below:

Use the ∆-complex structure to show that

Hk(K2) ∼=


Z if k = 0,

Z⊕ (Z/2Z) if k = 1,

0 if k ≥ 2.

(b) Let K2 be the Klein bottle as above. Use the universal coe�cient theorem to compute the
cohomology groups Hk(K2;G), where G is an abelian group.

Remark: You may use without proof the following facts from homological algebra:
• Hom( , G) and Ext1( , G) are additive functors
• Hom(Z, G) ∼= G

• Hom(Z/nZ, G) ∼= Tn(G) := {g ∈ G | ng = 0}
• Ext1(Z, G) = 0

• Ext1(Z/nZ, G) ∼= G/nG

(c) Use a Mayer–Vietoris sequence to calculate the homology groups of a disk in the plane with
two circular holes.


