Topology Qualifier 2019

Name: ____

- 1. Write *careful* definitions for the following.
 - (a) Topology

(b) Basis

(c) Closed Set

(d) Net convergence

(e) Cluster point for a net

(f) Continuous function

(g) Compact set

(h) Connected set

(i) Quotient space

(j) Closure of a set

(k) Path connected

(l) A chain complex is:

(m) A short exact sequence is:

- (n) A simplicial complex is:
- (o) Let X be a topological space. For $p \ge 0$, the *p*-th singular chain group $S_p(X)$ and boundary $\partial : S_p(X) \to S_{p-1}(X)$ are given by:
- (p) Let Λ be an index set, and for each $\lambda \in \Lambda$, X_{λ} a topological space. Let $X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$. Then the topology on X is coherent with the topologies on X_{λ} if:
- (q) A set X in \mathbb{R}^n is star convex with respect to a point w if:
- (r) A topological space X is a CW complex if:
- (s) Let X be a CW complex. For $p \ge 0$, the *p*-th cellular chain group $S_p(X)$ and boundary $\partial : S_p(X) \to S_{p-1}(X)$ are given by:
- (t) The projective *n*-space P^n is defined to be:

- 2. Prove **exactly ONE** of the following theorems from class. You do not need to recopy the statement of the theorem.
 - (a) Let X and Y be a topological spaces. A function $f : X \to Y$ is continuous if, and only if, for every net $(x_{\lambda})_{\lambda \in \Lambda}$ in X that converges to a point $x \in X$ we have the net $(f(x_{\lambda}))_{\lambda \in \Lambda}$ converges to $f(x) \in Y$.
 - (b) Tychonoff's Theorem
 - (c) Let $E \subset X$. If E is connected and $E \subseteq A \subseteq \overline{E}$ then A is also connected.
- 3. Prove **exactly ONE** of the following theorems from class. You do not need to recopy the statement of the theorem.
 - (a) Let X be compact. If \mathcal{E} is a collection of closed sets with the FIP, then $\cap \mathcal{E}$ is non-empty.
 - (b) Let X be a topological space. If each pair of points $x, y \in X$ is in a set $E_{x,y}$ that is connected, then X is connected.
- 4. Prove **exactly ONE** of the following theorems from class. You do not need to recopy the statement of the theorem.
 - (a) (Zig-Zag Lemma) Let $0 \to \mathcal{C} \xrightarrow{\phi_*} \mathcal{D} \xrightarrow{\psi_*} \mathcal{E} \to 0$ be a short exact sequence of chain complexes. Prove that the long sequence of homology groups

$$\cdots \to H_p(\mathcal{C}) \xrightarrow{\phi_*} H_p(\mathcal{D}) \xrightarrow{\psi_*} H_p(\mathcal{E}) \xrightarrow{\partial_*} H_{p-1}(\mathcal{C}) \to \cdots$$

is exact. [You may assume that ∂_* is a well-defined homomorphism]

- (b) The generalized Jordan Curve Theorem Let n > 0 Let C be a subset of \mathbb{S}^n homeomorphic to then n-1 sphere. Then $\mathbb{S}^n C$ has precisely two components, of which C is the common topological boundary.
- (c) Zero-dimensional Homology Ket K be a simplical complex. Then the group $H_0(K)$ is free abelian. If $\{v_{\alpha}\}$ is a collection consisting of a single vertex from each component of |K|, then the homology classes of the chains v_{α} form a basis for $H_0(K)$.
- 5. Complete **TWO** of the following problems. You must, of course, provide proofs (or counter examples) for your assertions.
 - (a) Prove the Brouwer fixed-point theorem, i.e. prove that for $n \ge 0$ every continuous map from B^n to itself has a fixed point.
 - (b) Let X be a subspace of \mathbb{R}^n which is star convex relative to the point w. Then X is acyclic in singular homology.
 - (c) State the Eilenberg-Steenrod Axioms for homology.
 - (d) Let K, L be simplicial complexes and $f, g : K \to L$ simplicial maps that are contiguous. Then there is a chain homotopy between f_{\sharp} and g_{\sharp} , and hence $f_* = g_*$.
 - (e) Prove that \mathbb{R}^n is homeomorphic to \mathbb{R}^m if and only if n = m.
- 6. Calculate the following
 - (a) The homology groups of the Klein bottle, K, and the connected sum of two Klein bottles, $K \not\equiv K$, in all dimensions.
 - (b) The fundamental group of the sphere, S^2 .