BAYLOR UNIVERSITY

Department of Mathematics

Ph.D Comprehensive Examination: Applied Math Part II Summer, 2019

INSTRUCTIONS:

- Do $\mathbf{3}$ of the following 6 problems. This part of the exam takes up to 120 minutes to complete.
- Write your results clearly so that a scanned copy can be emailed.
- You will be graded on how you arrived at the final answer. Show your detailed work.

1. Consider the numerical solution of the IVP

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad t \geq t_{0}, y\left(t_{0}\right)=y_{0} \tag{1.1}
\end{equation*}
$$

wher f is sufficiently smooth. Denote $t_{n+1}=t_{n}+h, n=0,1,2, \ldots, 0<h \ll 1$, and assume that $y_{m} \approx y\left(t_{m}\right)$ for $m=1,2, \ldots$ Let

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right], \quad n=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

(a) Show that (1.2) is a consistent approximation of (1.1).
(b) Show that the numerical method (1.2) is convergent. Derive its order of convergence.
2. Given the following order p and convergent multistep method for solving (1.1):

$$
\begin{equation*}
\sum_{m=0}^{s} \alpha_{m} y_{n+m}=h \sum_{m=0}^{s} \beta_{m} f\left(t_{n+m}, y_{n+m}\right), \quad n=0,1,2, \ldots, a_{s}=1, s \geq 1 \tag{2.1}
\end{equation*}
$$

Derive a proper Milne device for assessing its local error.
3. Let $T=\left(t_{k-j}\right)_{k, j=1}^{n}$ be an $n \times n$ TST matrix with $t_{-n+1}=\cdots=t_{-2}=0, t_{-1}=\beta, t_{0}=\alpha, t_{1}=$ $\beta, t_{2}=\cdots=t_{n-1}=0$.
(a) Show that the eigenvalues of T are

$$
\lambda_{j}=\alpha+2 \beta \cos \left(\frac{\pi j}{n+1}\right), \quad j=1,2, \ldots, n
$$

(b) Use the above result to show that there exists a conditionally stable explicit finite difference method for solving the IBVP:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad-1<x<1, \quad t>t_{0} \\
& u(-1, t)=u(1, t)=0, \quad t \geq t_{0} \\
& u(x, 0)=\phi(x), \quad-1<x<1
\end{aligned}
$$

where ϕ is sufficiently smooth on $(-1,1)$. If the stability is conditional, find the condition.
4. Consider the two-dimensional Poisson equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(x, y)=f(x, y), \quad(x, y) \in \Omega \tag{4.1}
\end{equation*}
$$

where $\Omega=\{(x, y) \mid 0<x, y<1\}$, together with the homogeneous Dirichlet boundary condition

$$
\begin{equation*}
\left.u(x, y)\right|_{\partial \Omega}=0 \tag{4.2}
\end{equation*}
$$

Let Ω_{h} be a uniform mesh region over Ω and its boundary $\partial \Omega$ with a uniform step size $0<h \ll$ 1 , $(n+1) h=1$, used in both directions. Consider the standard 5 -point scheme for solving the problem:

$$
\begin{equation*}
u_{k-1, j}+u_{k+1, j}+u_{k, j-1}+u_{k, j+1}-4 u_{u_{k}, j}=h^{2} f_{k, j}, \quad 1 \leq k, j \leq n \tag{4.3}
\end{equation*}
$$

(a) Show that (4.3) can be rewritten as a matrix equation

$$
A u=h^{2} f
$$

(b) Show that, following a standard order arrangement of the components in u, the matrix A has the eigenvalues

$$
\lambda_{\alpha, \beta}=-4\left[\sin ^{2}\left(\frac{\alpha \pi}{2(n+1)}\right)+\sin ^{2}\left(\frac{\beta \pi}{2(n+1)}\right)\right]
$$

and eigenvectors $v_{\alpha, \beta}=\left\{v_{\alpha, \beta, i, j}\right\}$, in which

$$
v_{\alpha, \beta, i, j}=\sin \left(\frac{i \alpha \pi}{n+1}\right) \sin \left(\frac{j \beta \pi}{n+1}\right), \quad i, j=1,2, \ldots, n,
$$

for $\alpha, \beta=1,2, \ldots, n$.
5. Consider the solution of the linear system

$$
\begin{equation*}
A x=b, \tag{5.1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}, n \gg 1$.
(a) Derive the Jacobi, Gauss-Seidel and SOR iterative schemes, respectively, for solving (5.1).
(b) Under what condition the above-mentioned iterative methods converge?
(c) Show that if A is irreducible and strictly diagonally dominant then the Jacobi method converges.
6. Consider the Cauchy problem

$$
\begin{equation*}
w_{t}=w_{x x}, \quad-\infty<x<\infty, t>0 ; \quad w(x, 0)=\phi(x), \quad-\infty<x<\infty \tag{6.1}
\end{equation*}
$$

Use the von Neumann analysis to discuss the numerical stability of the following finite difference scheme,

$$
w_{k}^{n+1}=w_{k}^{n}+\mu\left(w_{k+1}^{n+1}-2 w_{k}^{n+1}+w_{k-1}^{n+1}\right), \quad n \geq 0 ; \quad u_{k}^{0}=\phi_{k}
$$

where $\mu>0$ is the Courant number and ϕ is sufficiently smooth, for solving (6.1).

